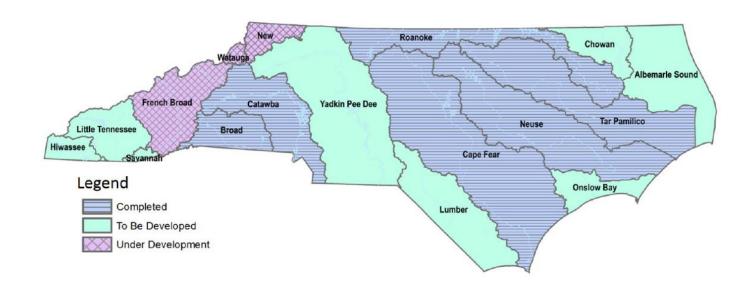


December 11, 2020

Project Timeline


Project Acknowledgement

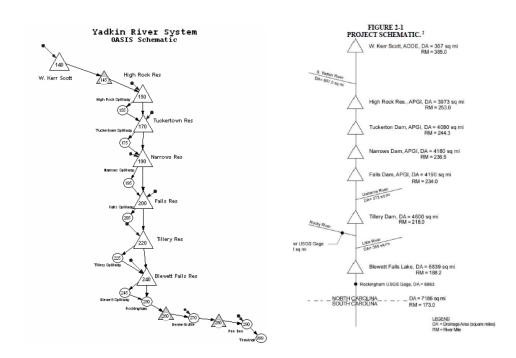
- Generous financial support by DWR
 - Tom Fransen, Pam Behm DWR
- Generous time commitment from stakeholders, especially TRC members
 - Neela Sarwar, Pam Behm DWR; Jonathan Williams HDR; Tim Poole Cube Carolinas; Ed Bruce Duke Energy;
 Tony Young Corps of Engineers; Aubrey Lofton Union County; Curtis Weaver USGS; Chris Goudreau NC Wildlife Resources
 Commission; Brian Fannon Yadkin Riverkeeper; Jefferson Currie Lumber Riverkeeper
- Supporting documentation and data from the YPDWMG and its members (utilities and power companies)

Meetings and Purpose

- Kickoff Meeting (Mar. 4)
- TRC #1 (Sept. 2): model development overview, plus schematic review
- TRC #2 (Oct. 5): review inflows
- TRC #3 (Nov.12): review basecase run results (including inflows and operating logic)
- Model Overview [today]: provide model overview, applications of model, and results
- Training (mid-Jan): virtual demonstration of OASIS model and scenarios

NC DWR Basin-Wide Modeling Initiative (Shown to YPDWMG in Nov.2016)

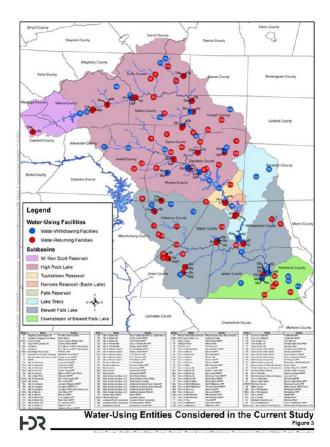
CHEOPS model in Catawba; OASIS model elsewhere. First DWR basin model was in the 1970s for the Yadkin Capacity Use Area Study.


Major Modeling and Water Use Assessment in the Yadkin

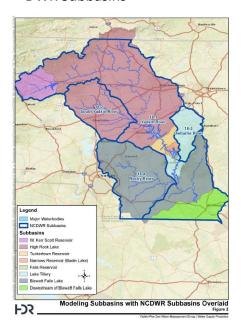
Relicensing

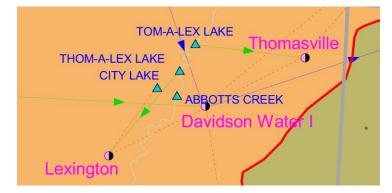
- Yadkin Project: Alcoa (APGI) early 2000s; new license issued in 2017 to now Cube Hydro Carolinas. OASIS developed by HydroLogics (now Hazen)
- Yadkin-Pee Dee Project: Progress Energy mid 2000s; new license issued in 2015 to now Duke Energy. CHEOPS developed by DTA (now HDR).

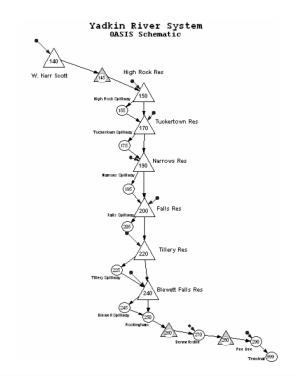
IBT Permitting

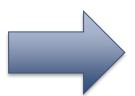

- Concord/Kannapolis: OASIS used by NC DWR.
- Union County: CHEOPS used by HDR.

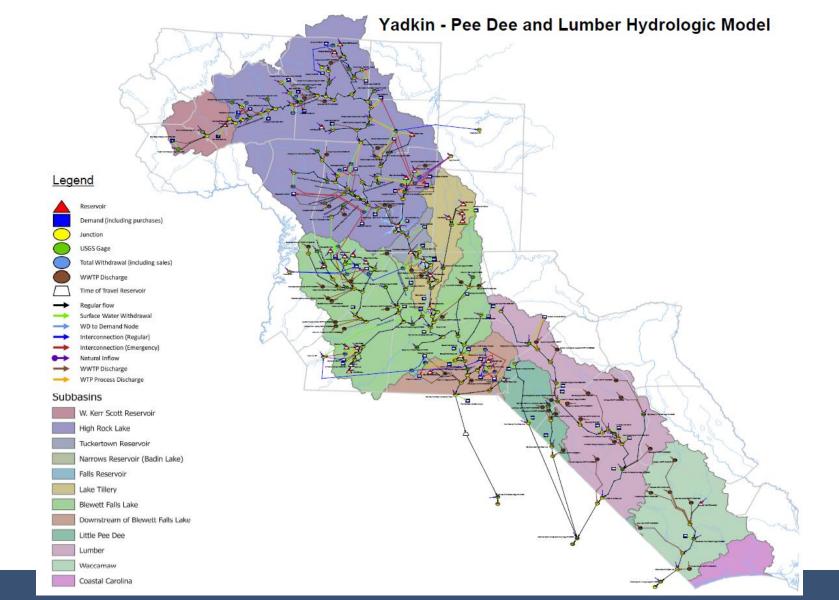
Major Modeling and Water Use Assessment in the Yadkin (cont'd.)

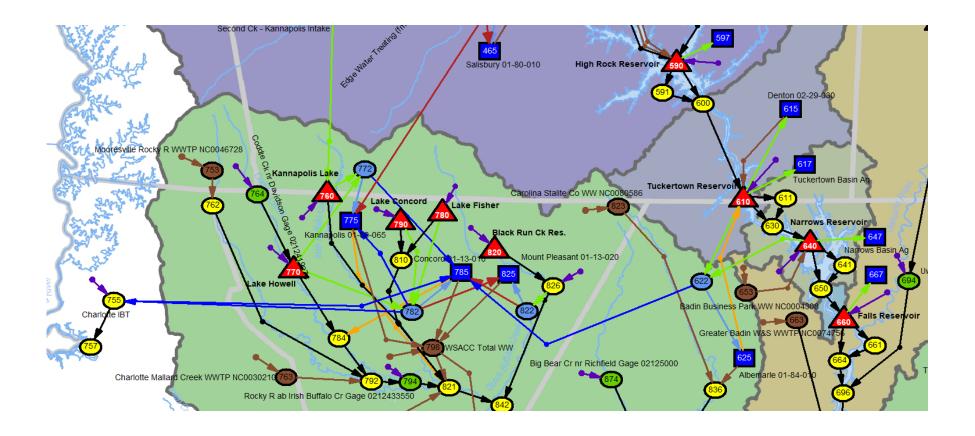

Yadkin-Pee Dee Water Use

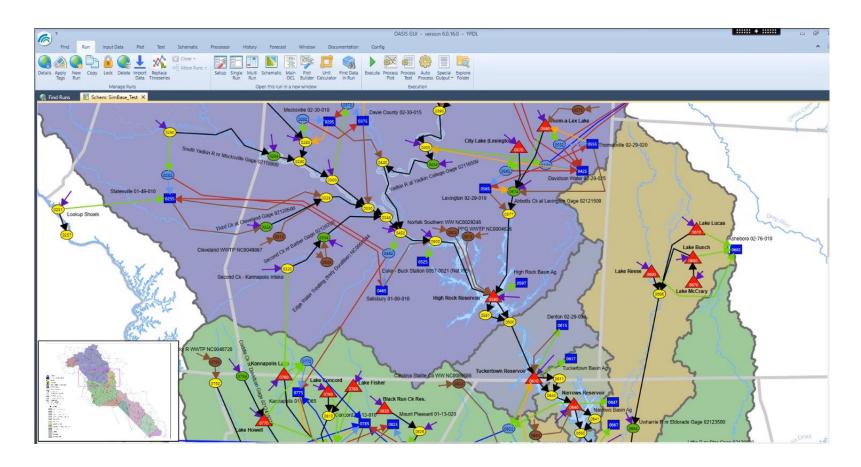

- Water Use Study 2014
- Part of Union County IBT process
- Basin-wide projections (W. Kerr Scott to SC state line)
- o 2010-2012 (base) to 2060
- YPDWMG 2019 Updates
- Part of Water Resources Plan development
- o 2017 (base) to 2070




The Next Model Iteration


Reservoir Catchments and DWR Subbasins

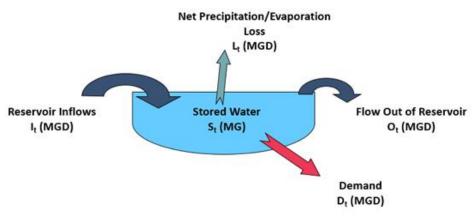



Schematic Detail

Classic OASIS

S OASIS with OCL --- Run directory: C:\Work_from_HL\Work\OASIS_Yadkin_PeeDee_Lumber_Nov_2020\Runs\simulation\Final_18_Nov_2020 [Simulation Mode] File Edit Run Output Help Setup | Time | Node | Arc | OCL | Misc | Update Record Schematic Lake McCrary Zoom 230 ▼ % High Rock Reservoir (A) (A) Denton 02-29-030 Abc 👝 🔤 📋 I₽ NODES Tuckertown Basin Ag **Tuckertown Reservoir** Stalite Co WW NC0080586 **Narrows Reservoir** Res. Narrows Basin Ag Pleasant 01-13-020 Uwharrie R nr Eldorado Gage 0212350 Little R nr Sta Badin Business Park WW NC0004308 Falls Reservoir

New OASIS

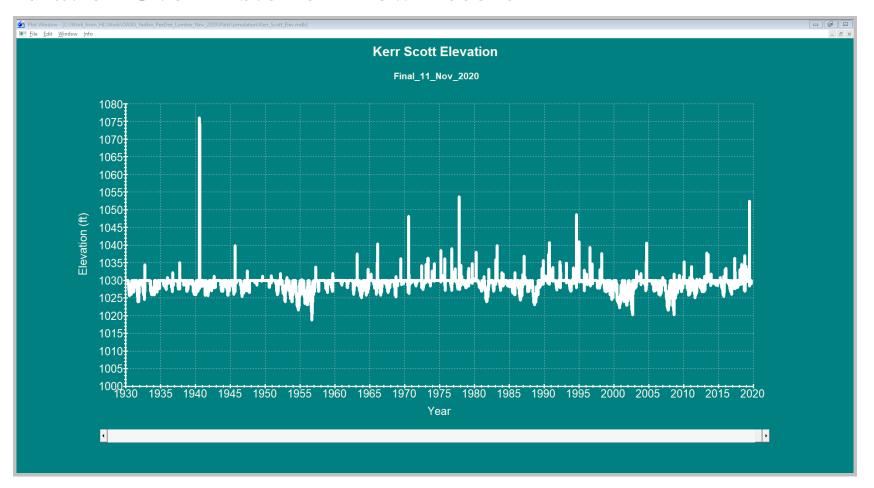

Refinements with YPDL OASIS Model*

- Inflow dataset
 - Relies on longer inflow record to capture additional droughts
 - Uses many more gages in the basin (made possible by extensive data unimpairment), including key gages on the mainstem (Yadkin College, High Rock, and Rockingham), plus inflows derived from historic operating data for Kerr Scott and High Rock
 - Ensures a monthly match with unregulated gage flows
 - Automated update to keep inflows current and allow for operations and real-time forecasting
- Ag water use developed explicitly around water use needs of certain crops relative to rainfall and needs of livestock
 - Future demands can be updated automatically as crop patterns and livestock counts change
- Tracking the flow of water
 - Extensive interconnections (regular, emergency, and/or IBTs) provided
- Automated safe yield routines
- Switch to turn on and off all drought plans, including LIP
- Automated demand adjustment (uniformly applied to all demand nodes)
 - WW returns linked to demand nodes get adjusted automatically

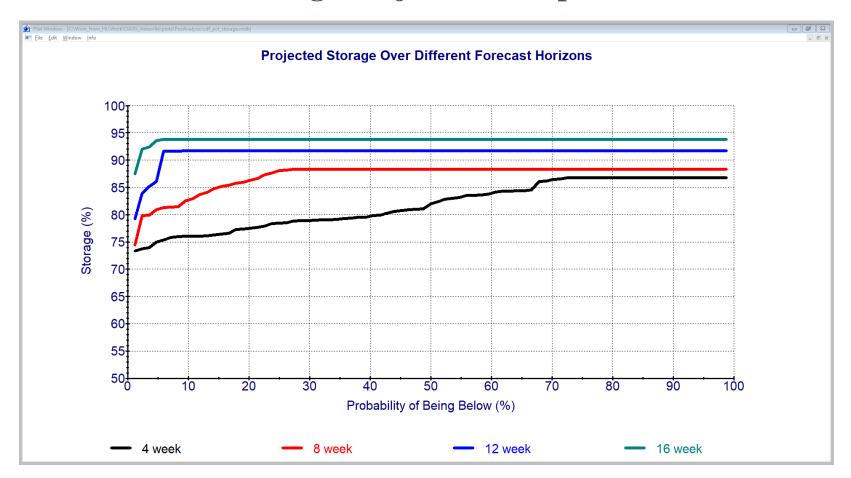
^{*} Common to all OASIS models for NC basins

Uses of the Model

- Water budgeting (supply and demand) for all <u>significant users</u>, over a long, <u>fully</u> unimpaired <u>inflow record</u>
 - Prior models did not capture this level of detail, including interconnections
 - Example: Monroe is one of dozens of systems that can now be evaluated, capturing the critical droughts of record for each (for Monroe, 1950-51)



 $S_t = S_{t-1} + I_t - D_t - L_t - O_t$ where $S_{t-1} = yesterday's storage$


Uses of the Model (cont'd.)

- Drought plan assessment
 - Develop improved operating rules, including probability-based drought triggers
 - Drought exercises for the YPDWMG
- Impacts of interbasin transfers
- Planning and operations of facilities (including hydro)
- Ecological flow impacts
- Forecasting of inflows and reservoir storage
- Impacts of reservoir rule curves and storage on downstream flows
 - Not a hydraulic model, but can be used for assessing flood control benefits
 - Note: routing provided to improve flow estimation to High Rock (based on one day lag of Kerr Scott change in storage) and South Carolina Pee Dee gage (based on two day lag from Rockingham)
 - Generally, routing is not needed because of significant local resolution in inflows due to wide network of gaging stations used in inflow development

Simulation Over Historic Inflow Record

Forecast Run – Storage Projection Sample

Uses of the Model of Interest to the YPDWMG

Table 1-1. Selected scenarios for further analysis

Scenario Category	Scenario
Climate/ Environmental Shifts	Drought reduces supply
	2. Storms become more infrequent and intense
	 Increase in sedimentation decreases reservoir storage and/or restricts intakes
General Policy Shift	 New policy or regulation requires an increased quality of wastewater discharge (e.g. High Rock Lake Nutrient Management)
	5. W. Kerr Scott Reservoir revised flow protocol
	 New regulation/ policy requires an increase in the price of water, which decreases demand
Industrial	Increase in industry wastewater production (Ex. Poultry processing), resulting in degraded water quality
Public Behavioral Shifts	 Increased population growth within the region, which increases demand
	Increased regionalization as people move to urban centers and become less reliant on well water, which increases demand
	 Changes to IBT, which allows more water to leave the basin

Table 1-2. SAC Selected scenarios for further analysis

Scenario Category	Scenario
Land Use Change	 Reduction in forested land could lead to an increase of runoff of nutrients and contaminants
Climate/ Environmental	Increase in peak storm flows carry more sediment and nutrients
Shifts	 Evaluate the potential for improving the flood management capabilities to mitigate the impacts of future flooding throughout the Basin (including South Carolina)

Uses Could Include Other Scenarios Considered Before

Union County IBT analysis by HDR

- No additional IBT for Union County's YRWSP
- Future (Year 2050) basin-wide water demands (withdrawals/returns)
- o Includes future impact of climate change in future years resulting in an increased temperature of 2.3 deg F (0.6 deg F increase per decade) and lake surface evaporation increases of 7.8% (equivalent to an increase of 2% per decade), as compared to the 2012 baseline. This impact is consistent with the climate change impact considered by the Catawba-Wateree Water Management Group in preparation of the Catawba-Wateree Water Supply Master Plan baseline planning scenario, and is consistent with modeled climate change scenarios for this region of the United States.

41-2012 (Alternative 1-2012)

- 23 mgd (maximum month daily average demand (MMDD)) IBT (net) from Pee Dee River, withdrawn at Lake Tillery
- Current (Year 2012) basin-wide water demand (withdrawals/returns) with Union County YRWSP projected Year 2050 IBT
- Used to compare effects of Alternative 1 to BLY-2012 (Yadkin Baseline-2012) scenario under current basin-wide water demand.

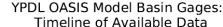
A1-2050 (Alternative 1-2050)

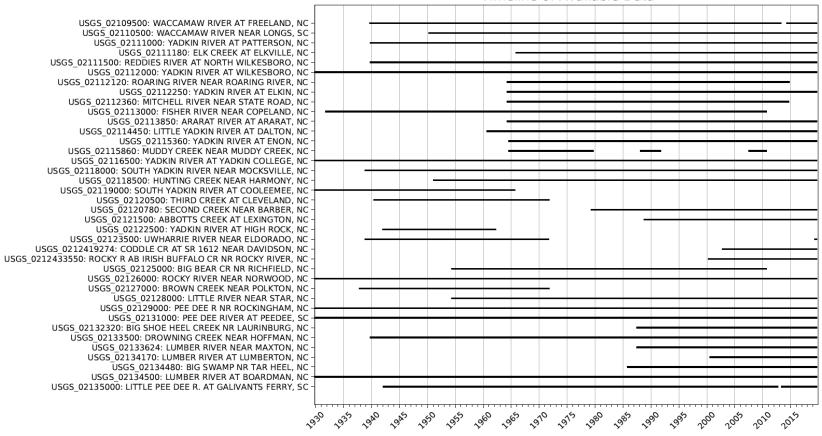
OASIS Model Accessibility

- Available to all stakeholders through accounts to NC DWR server
- Model is a living document, meant to be easily updated
 - Provided with automated inflow update
 - Changes to system plumbing or operating rules can easily be made
 - Adding additional historical data for inflow/operating rule verification
- Model is user-friendly, with easy to define performance measures like elevation, flow, and generation, along with probability tables and plots and user-defined level of impact (thresholds defining minor or major) like for Union County IBT analysis.
- Model is well documented, including historical detail on hydro operations between the old license, "interim" license, and new licenses

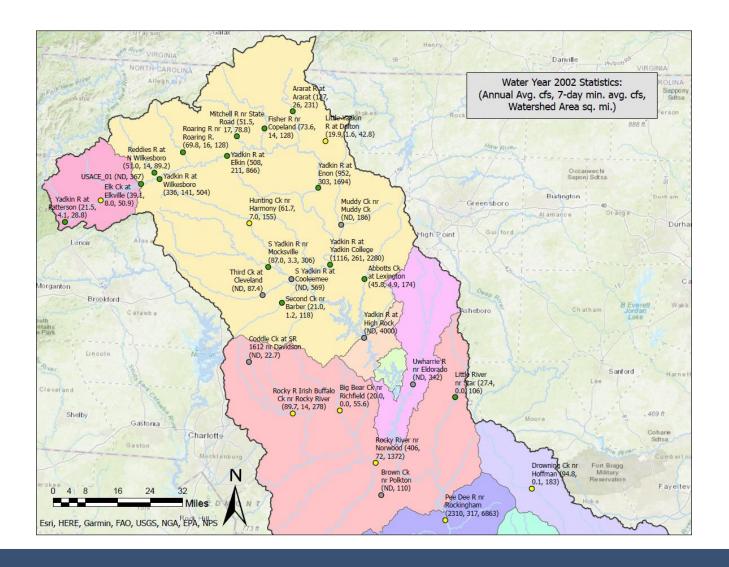
```
// File is Mainstem_Operations.ocl, which has the coding to handle the operations from the Yadkin Projects (High Rock down to Falls)
// and the Yadkin-Pee Dee Projects (Tillery and Blewett Falls).
// The details are defined in the 50-year FERC licenses for the 212.5 MW Yadkin Hydro Project (Cube) [FERC Project No. 2197, or P-2197]
// and the 108.6 MW Yadkin-Pee Dee Hydro Project (Duke Energy) [P-2206] as well as in the drought plans of utilities bound by it
// because of withdrawals from the reservoirs (including IBTs) like Concord and Kannapolis.
```

Tutorial for creating and modifying runs and adjusting input and output

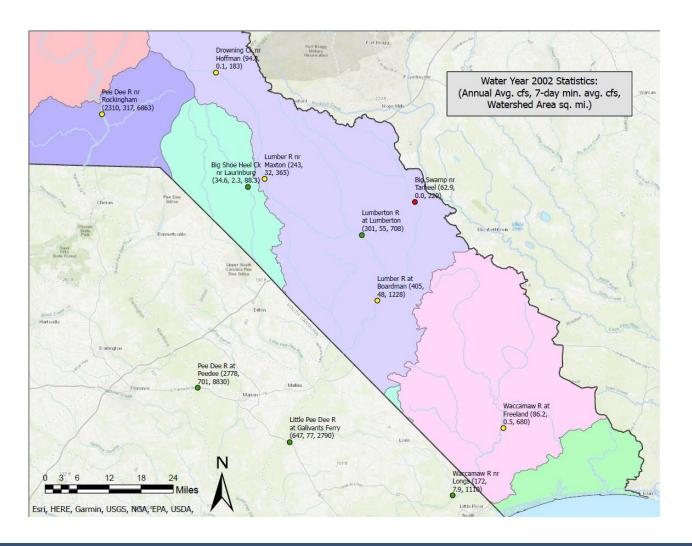

Model Development Process


- Develop schematic
 - Yadkin Pee Dee: node numbers <= 999
 - Lumber: node numbers >= 1000
 - Nodes assigned ending number depending on classification (e.g., reservoirs = __0)
 - Geographic extent: from headwaters to where rivers join the Pee Dee in South Carolina, with local resolution in North Carolina
 - Provide consistency with HDR's YPDWMG Demand Projections (Tech Memo Update July 2019) regarding entities, amounts, and sub-basin classifications
 - Surface water only (either withdrawals or WW discharges), with facilities in operation or anticipated in the future
- Compile streamflow and precipitation gaging data
- Collect impairment data (withdrawals and WW discharges >= 0.1 mgd for M&I, plus withdrawals for Ag), plus reservoir change in contents, from databases and information from entities
- Hindcast impairments back to 1930 (start of inflow record), adjusted for facility start/stop dates
- Develop unimpaired inflows on monthly basis
 - Match at gages, meaning error is embedded in the impairments
 - Disaggregate to daily inflows using mostly reference gages
- Incorporate operating rules
- Develop basecase run (current conditions) daily timestep, 1930 to Sept. 2019 (with provisional inflow updates to allow for real-time drought forecasting)

Schematic


- Inflow nodes: 80 in YPD, 20 in Lumber
 - USGS gages = 36
- Reservoir nodes: 30 (all but one in the YPD)
- M&I demand nodes: 40 in YPD, 5 in Lumber
- Agricultural demand nodes: 8 in YPD, 5 in Lumber
- WW return arcs linked to demand nodes: 35 in YPD, 5 in Lumber
- WTP process return arcs linked to demand nodes: 15 in YPD, 1 in Lumber
- WW independent return nodes: 25 in YPD, 20 in Lumber
- Interconnection arcs: 15 regular, 30 emergency, including IBTs
- Future intakes

Compile Gaging Data (for the USGS-designated "Pee Dee River Basin"



Gage Map

Gage Map

Compile Impairments

Water withdrawals*

- · Public: LWSP database (1997 through present, with some gaps, on a monthly basis); data collected through 2019.
- Industrial (including power plants): WWATR database (1999 through present, with some gaps, on a monthly basis); data collected through 2018
 - Power plants evaluated as "net" withdrawal for consistency with HDR study (= water wastewater use) since water and WW discharges are in close proximity
- Agriculture: from USDA census data on irrigated crop acreage and livestock counts, + USGS surveys. Key irrigated crops incorporate water use curves in which irrigation use is dependent on rainfall. Use computed at county level (NC, but also VA and SC) and, in most cases, allocated to each subbasin based on percent coverage.
- · Additional data from entities will supersede information from databases

Wastewater discharges

- Public: NPDES database (early 1990s through present on a monthly basis); data collected through 2018. Some information provided from LWSP databases.
- Industrial: NPDES
 - Occasionally, facilities have multiple outfalls which were aggregated to get total discharge
- · Additional data from entities will supersede information from databases
- · Some entities include NCG (stormwater) permits; stormwater excluded

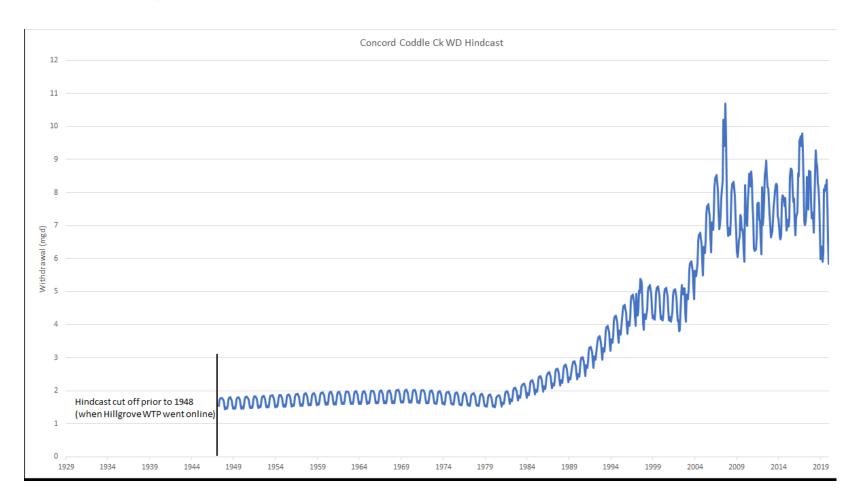
Reservoir change in contents and associated net evaporation (using surface area x net evap rate)

- · USGS reports provide key information on mainstem reservoir change in contents
- Supplemented with requests of utilities and power companies

^{*} NC Statute in 1991 required WD registration, updated every 5 years, for non-Ag uses > 0.1 mgd (Ag use is > 1 mgd) or transfers from one basin to another. In 2007, requirement for annual water use reporting.

Criteria For Entities Being Included in the Inflow Unimpairment

- All those with historic surface water withdrawals from the basin > 0.1 mgd annual average (Ag not included)
 - Seasonality considered when annual average < 0.1 mgd
 - Only Lumberton had significant GW withdrawal as well as SW withdrawal. This was accounted for.
- All those with historic surface water WW discharges in the basin > 0.1 mgd annual average
 - · Also applies to entities that withdraw only GW
 - Same note as above on seasonality


Excluded are purchasers that do not have a surface water withdrawal in the basins

• E.g., Yadkin County which purchases water from Jonesville

Note: for schematic inclusion, entities must have used > 0.1 mgd in the last 5 years (or are anticipated to use > 0.1 mgd in the future), or interconnections like IBTs that have not been used yet or are used only in emergency

• E.g., Charlotte (through Concord-Kannapolis), Union County (from Tillery), Greensboro (through Winston-Salem), and High Point (through Winston-Salem)

Hindcasting

Sub-Basin Estimates from HDR Study

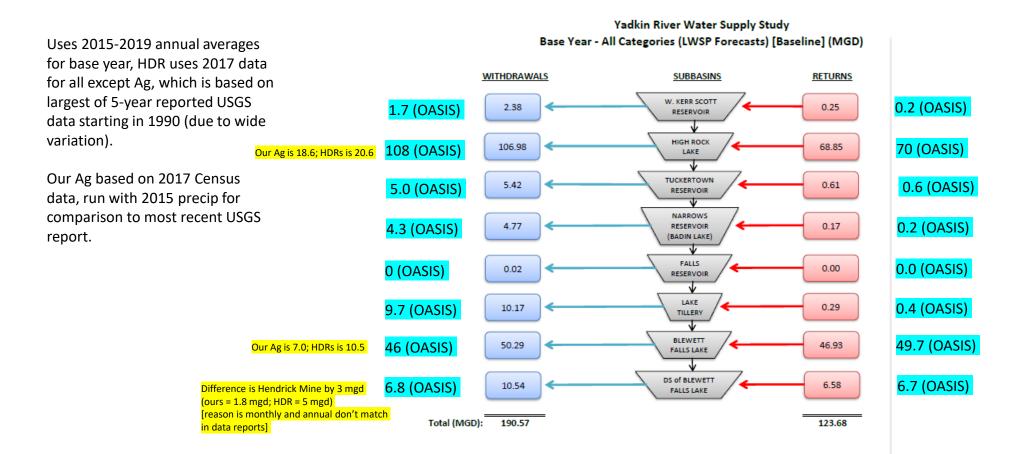
HDR Base Year = 2017 (Ag based on the highest reported water use from 5-year USGS reports available from mid-1980s to 2015)

Breakout from HDR Study

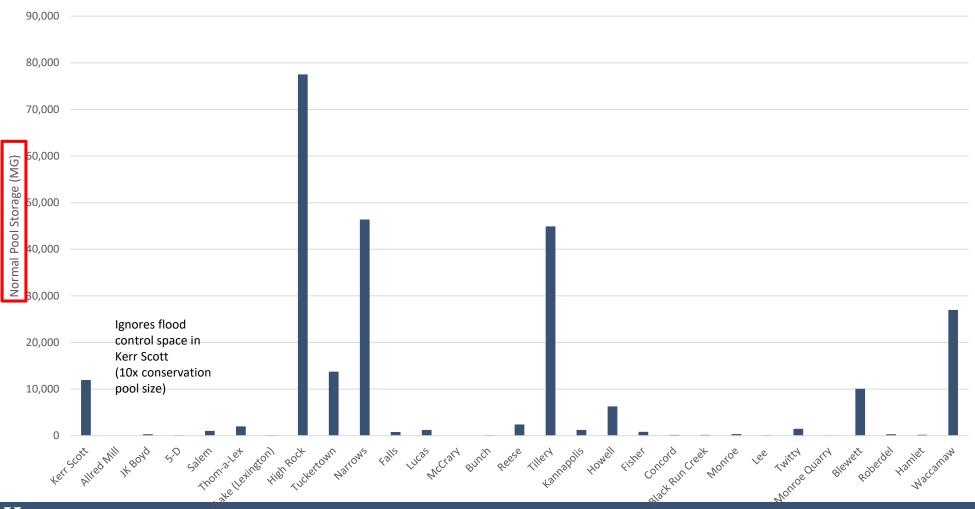
As noted, power discharges are incorporated in the withdrawal numbers as a net withdrawal, so discharges are shown as 0.

We made the same assumption.

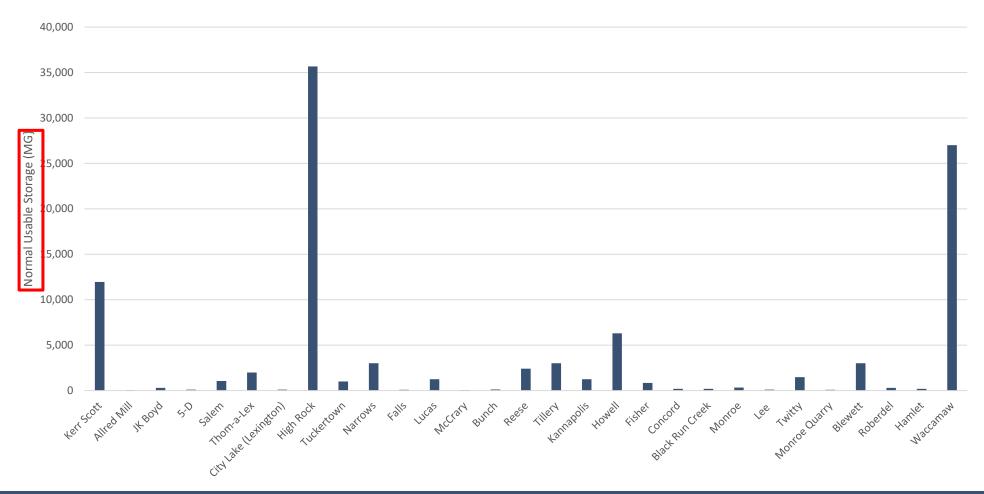
				Projected Witho	frawals by Subbasi	in (mgd)			
				(LWSP Fo	orecasts) [Baseline	1			
					Subbasin				
,		W. KERR SCOTT		TUCKERTOWN	NARROWS RESERVOIR	FALLS		BLEWETT FALLS	DOWNSTREAM OF BLEWETT
Year	Total	RESERVOIR	HIGH ROCK LAKE	RESERVOIR	(BADIN LAKE)	RESERVOIR	LAKE TILLERY	LAKE	FALLS LAKE (NC)
	/Wastewater								
Base	134.35	0.00	80.48	4.83	4.51	0.00	7.84	32.74	3.96
2020	176.42	0.00	97.18	7.18	7.09	0.00	12.31	48.11	4.56
2030	195.89	0.00	105.99	7.37	7.32	0.00	20.38	50.04	4.79
2040	214.41	0.00	116.10	7.51	7.49	0.00	25.89	52.42	5.00
2050	234.03	0.00	126.24	7.68	7.70	0.00	32.05	55.14	5.23
2060	252.46	0.00	138.41	7.83	7.88	0.00	35.55	57.33	5.47
2070	274.66	0.00	148.32	8.32	8.38	0.00	39.42	64.60	5.61
Industrial									
Base	11.06	0.23	3.11	0.00	0.00	0.00	0.00	2.92	4.81
2020	16.56	0.23	4.11	0.50	0.50	0.50	1.00	3.92	5.81
2030	16.56	0.23	4.11	0.50	0.50	0.50	1.00	3.92	5.81
2040	16.56	0.23	4.11	0.50	0.50	0.50	1.00	3.92	5.81
2050	16.56	0.23	4.11	0.50	0.50	0.50	1.00	3.92	5.81
2060	16.56	0.23	4.11	0.50	0.50	0.50	1.00	3.92	5.81
2070	16.56	0.23	4.11	0.50	0.50	0.50	1.00	3.92	5.81
Agriculture/I	rrigation								
Base	38.24	2.16	20.66	0.60	0.26	0.02	2.33	10.45	1.77
2020	54.63	3.94	29.15	0.88	0.36	0.02	3.87	13.94	2.48
2030	54.64	3.94	29.15	0.88	0.36	0.02	3.87	13.95	2.48
2040	54.66	3.94	29.15	0.88	0.36	0.02	3.87	13.96	2.48
2050	54.67	3.94	29.15	0.88	0.36	0.02	3.87	13.97	2.48
2060	54.68	3.94	29.15	0.88	0.36	0.02	3.87	13.99	2.48
2070	54.70	3.94	29.15	0.88	0.36	0.02	3.87	14.00	2.48
Power									
Base	6.92	0.00	2.74	0.00	0.00	0.00	0.00	4.18	0.00
2020	8.00	0.00	3.00	0.00	0.00	0.00	0.00	5.00	0.00
2030	14.00	0.00	9.00	0.00	0.00	0.00	0.00	5.00	0.00
2040	14.00	0.00	9.00	0.00	0.00	0.00	0.00	5.00	0.00
2050	6.00	0.00	6.00	0.00	0.00	0.00	0.00	0.00	0.00
2060	42.00	0.00	42.00	0.00	0.00	0.00	0.00	0.00	0.00
2070	42.00	0.00	42.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	•								
Base	190.57	2.38	106.98	5.42	4.77	0.02	10.17	50.29	10.54
2020	255.61	4.17	133.44	8.56	7.95	0.52	17.17	70.96	12.85
2030	281.09	4.17	148.25	8.74	8.18	0.52	25.25	72.90	13.07
2040	299.63	4.17	158.36	8.89	8.35	0.52	30.75	75.29	13.29
2050	311.25	4.17	165.50	9.06	8.56	0.52	36.92	73.03	13.51
2060	365.70	4.17	213.67	9.20	8.74	0.52	40.41	75.23	13.76
2070	387.91	4.17	223.58	9.70	9.24	0.52	44.29	82.52	13.90


Breakout from HDR Study

				mgd) 					
		W. KERR SCOTT		TUCKERTOWN	Subbasin NARROWS RESERVOIR	FALLS		BLEWETT FALLS	DOWNSTREAM OF BLEWETT
Year	Total	RESERVOIR	HIGH ROCK LAKE	RESERVOIR	(BADIN LAKE)	RESERVOIR	LAKE TILLERY	LAKE	FALLS LAKE (NC)
	/Wastewater								
Base	119.09	0.00	65.39	0.61	0.00	0.00	0.29	46.40	6.39
2020	136.89	0.00	77.86	0.69	0.00	0.00	0.30	51.60	6.44
2030	156.04	0.00	84.62	0.73	0.00	0.00	0.32	63.77	6.60
2040	180.33	0.00	92.12	0.77	0.00	0.00	4.74	75.93	6.77
2050	203.08	0.00	99.50	0.80	0.00	0.00	8.46	87.38	6.94
2060	220.42	0.00	108.49	0.84	0.00	0.00	1.84	102.12	7.12
2070	246.10	0.00	117.24	0.89	0.00	0.00	2.13	118.53	7.30
ndustrial	4.50	0.05	2.45	0.00	0.47	0.00	0.00	0.53	0.40
Base	4.60	0.25	3.46	0.00	0.17	0.00	0.00	0.53	0.19
2020	4.62	0.25	3.47	0.00	0.18	0.00	0.00	0.53	0.19
2030	4.69	0.25	3.49	0.00	0.23	0.00	0.00	0.53	0.19
2040	4.77	0.25	3.50	0.00	0.30	0.00	0.00	0.53	0.19
2050	4.88	0.25	3.52	0.00	0.38	0.00	0.00	0.53	0.19
2060	5.01	0.25	3.54	0.00	0.49	0.00	0.00	0.53	0.19
2070	5.17	0.25	3.57	0.00	0.63	0.00	0.00	0.53	0.19
griculture/l	_								
Base	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2030	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2060	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2070	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ower									
Base	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2030	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2060	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2070	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
otal	400.00		50.05		2.17			45.00	
Base	123.68	0.25	68.85	0.61	0.17	0.00	0.29	46.93	6.58
2020	141.51	0.25	81.32	0.69	0.18	0.00	0.30	52.13	6.63
2030	160.72	0.25	88.10	0.73	0.23	0.00	0.32	64.30	6.79
2040	185.10	0.25	95.63	0.77	0.30	0.00	4.74	76.46	6.96
2050	207.96	0.25	103.02	0.80	0.38	0.00	8.46	87.91	7.13
2060	225.42	0.25	112.03	0.84	0.49	0.00	1.84	102.65	7.31
2070	251.27	0.25	120.81	0.89	0.63	0.00	2.13	119.06	7.49


Aggregation of Impairments

- Current conditions OASIS run (Basecase) uses 2015-2019 averages
- Compare with HDR Baseline conditions which use 2017 data


OASIS Input Data Comparison

Reservoir Storage Summary

Reservoir Storage Summary

Reservoir Impairments (Using High Rock and Narrows as an Example)

1224. High Rock Lake at High Rock, N. C.

Location. --Lat 35°36'02", long 80°14'06", at dam on Yadkin River 0.8 mile northwest of High Rock, Davidson County, 2 miles upstream from Lick Creek, and at mile 252.3.

Drainage area .-- 4,000 sq mi, approximately.

Records available .-- November 1927 to September 1960.

Gage.--Water-stage recorder and staff gage. Datum of gage is 30.9 ft (revised) below mean sea level, datum of 1929.

Remarks. --Lake used for hydroelectric power development was first put in operation Nov. 7, 1927. Total capacity is 11,090,000,000 cu ft and usable capacity is 10,280,000,000 cu ft between elevations 625 and 655 ft (top of gates). Figures given herein represent total contents. Records previously published as change in contents, equivalent in cubic feet per second.

Cooperation .-- Records furnished by Yadkin, Inc. (formerly Carolina Aluminum Co.).

			Content	s, in mi	llions o	f cubic	feet, on	last da	y of mon	th		
Water year	Oct.	Nov.	Dec.	Jan.	Peb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1928 1929 1930	11,025 10,992	0 9,878 11,058	7,932 8,172 11,058	4,461 6,552 10,895	6,914 10,700 10,635	8,502 11,058 10,765	11,025 11,025 8,784	11,058 10,960 6,412	10,960 11,058 10,472	9,725 10,505 3,195	10,928 8,338 3,393	11,025 5,376 2,330
1931	1,072	1,570	3,256	4,604	2,892	5,397	11,025	11,090	8,784	9,158	10,992	8,195
1932	4,543	2,664	4,291	11,090	10,321	10,668	11,025	10,850	10,159	5,363	5,439	3,433
1933	11,058	11,077	10,882	11,070	10,440	10,947	10,824	10,002	8,624	6,842	7,618	9,797
1934	2,538	1,327	1,262	882	4,696	10,973	10,921	11,070	10,315	11,032	11,077	11,025
1935	9,996	9,828	11,064	11,051	11,084	10,739	10,862	10,973	7,706	10,084	7,207	6,904
1936	3,681	3,237	1,001	11,058	10,732	10,992	11,045	9,048	9,158	8,426	9,990	6,142
1937	9,743	4,682	9,365	10,674	11,032	10,512	11,058	10,264	7,539	3,872	9,036	6,004
1938	11,058	9,815	6,250	5,978	4,155	5,055	4,025	4,714	9,042	11,090	9,158	4,899
1939	2,441	4,393	6,066	6,575	11,025	11,090	10,765	7,985	6,203	10,830	10,700	6,528
1940	2,198	1,268	2,064	1,244	3,736	4,155	6,769	7,828	8,255	8,200	10,895	8,420
1941	3,262	6,250	5,978	5,934	4,750	6,672	7,262	2,920	2,920	10,570	9,100	5,586
1942	2,318	1,959	2,581	2,318	6,473	10,103	6,720	10,396	9,014	6,691	8,956	7,565
1943	4,257	5,657	10,128	11,090	9,014	10,895	10,661	7,948	9,347	10,390	9,761	8,830
1944	7,545	6,514	4,328	5,594	11,031	11,051	10,785	9,653	6,551	10,128	6,133	10,875
1945	10,538	9,569	9,112	9,106	11,032	9,996	10,271	9,112	5,363	9,467	6,394	11,090
1946	9,002	7,770	10,999	10,752	10,824	10,960	9,671	10,642	6,188	3,878	5,384	3,745
1947	3,240	2,755	2,174	10,765	6,528	6,624	8,255	7,775	10,505	6,672	4,532	6,909
1948	11,005	11,051	8,646	8,646	10,817	11,058	9,872	10,538	8,530	6,315	8,698	4,485
1949	3,454	11,025	11,058	9,878	10,960	11,050	10,960	9,635	9,455	10,700	11,205	10,378
1950	10,960	10,960	8,640	8,870	9,275	10,830	9,575	10,960	8,530	9,187	9,755	8,200
1951	6,624	5,418	8,812	6,914	7,722	8,755	10,895	9,455	10,065	10,570	9,100	9,575
1952	8,255	7,932	10,378	9,335	9,515	11,090	11,025	9,455	9,575	9,215	10,700	9,042
1953	8,348	10,340	9,695	10,700	10,960	11,025	9,455	10,190	10,609	9,215	9,455	10,002
1954	10,002	9,515	8,090	10,505	10,065	10,190	8,420	8,985	8,640	6,250	7,880	5,376
1955	5,934	4,189	6,066	4,393	7,414	6,624	10,427	8,148	6,110	5,376	5,211	4,899
1956	4,058	2,568	1,638	823	3,672	5,016	9,456	8,364	5,890	5,016	2,441	10,001
1957	8,364	5,172	6,963	3,424	11,018	10,554	10,619	8,869	10,879	9,759	7,161	10,879
1958	9,396	11,018	10,619	11,018	11,018	11,018	11,090	10,490	10,182	9,215	9,336	3,928
1959	2,492	2,492	9,819	10,947	9,456	8,700	10,813	8,813	8,644	10,365	10,748	9,819
1960	10,813	9,336	10,947	10,619	11,018	11,018	11,018	10,947	10,061	9,275	9,096	5,978

184 PEE DEE RIVER BASIN

1228.44. Badin Lake near Badin, N. C.

Location. --Lat 35°25'10", long 80°05'34" (revised), at dam on Yadkin River, 1½ miles northeast of Badin, Stanly County, 2½ miles upstream from Falls Dam, 4 miles upstream from UWharrie River, and at mile 236.

Drainage area .-- 4,180 sq m1, approximately.

Records available .-- December 1917 to September 1960.

<u>Gage</u>.--Water-stage recorder and staff gage. Datum of gage is 30.9 ft (revised) below mean sea level, datum of 1929.

Remarks .-Badin Lake (locally known as Marrows Reservoir) used for hydroelectric power development, was first put in operation July 18, 1917 (revised). Total capacity 10, 10,497,960,000 cu ft and usable capacity is 8,202,584,000 cu ft between elevations 505.0 and 541.1 ft (revised). Figures given herein represent total contents. Records not previously published; changes in contents, equivalent in cubic feet per second, for a group of reservoirs including this one have been published since March 1928.

Cooperation .-- Records furnished by Yadkin, Inc. (formerly Carolina Aluminum Co.).

ater	Oct.	Nov.	Dec.	Jan.	Peb.	Mar.	Apr.	May	June	July	Aug.	Sept.
rear	Uet.	NOV.	Dec.	Jan.	Pen.	mar.	Apr.	мау	June	July	Aug.	Sept.
1917	-	-	-	-	-	-	-	-	-	-	-	-
1918			6,540	9,961	8,927	9,260	9,954	9,897	8,685	8,575	10,288	10,01
1919	10,524	10,450	10,442	10,394	10,254	10,024	10,406	10,453	10,453	10,453	10,173	
1920	9,282	9,114	10,300	10,500	10,500	10,500	10,488	10,442	10,395	10,000	10,524	10,51
1921	8,839	10,524	10,500	10,512	10,500	10,512	10,500	10,512	10,418	10,035	8,411	8,06
1922	7,064	10,500	9,462	10,488	10,524	10,476	10,524	10,524	10,524	10,382	10,104	
923	7,790	5,056	6,217	8,685	9,418	10,382	10,196	10,453	7,510	6,274	9,114	
924	8,938	6,000	7,906	9,748	10,162	10,070	10,336	10,406	9,702	10,196	9,770	
925	9,958	6,000	9,805	10,219	9,530	8,444	5,700	6,898	5,359	5,172	4,847	5,76
926	6,502	7,906	6,179	9,770	10,524	8,379	7,690	5,551	5,790	10,464	9,282	6,71
927	5,508	8,358	10,512	6,530	10,512	9,759	7,540	6,782	9,552	10,092	10,418	8,52
928	9,305	5,817	8,729	9,181	9,748	9,805	10,464	10,476	10,394	10,196	10,442	10,45
930	10,348	10,512	10,524	10,242	10,302	10,476	10,442	10,219	10,208	8,817	6,629	10,3
					10,200						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
931	4,157	6,150	8,529	9,964	9,987	10,030	10,488	10,524	9,996	10,067	10,524	
932	10,083	8,383	9,950	10,512	10,138	10,276	10,324	9,862	10,247	10,106	10,270	
934	7,919	6,422	10,382	10,425 5,161	10,430 5,173	10,120	10,129	10,288	10,219	9,837	9,987	10,16
935	9,911	9,768	10,481	10,476	10,505	10,364	10,413	10,329	10,040	9,959	9,954	9,85
936	9,365	9,242	6,762	10,354	10,366	10,359	10,502	10,012	9,789	10,143	9,860	10.01
937	10,111	9,904	9,794	10,354	10,359	10,359	10,444	10,134	10,189	10,171	10,010	
938	10,423	9,890	9,973	9,911	9,888	9,968	9,908	9,722	9,879	10,522	10,125	
939	7,970	9,810	9,968	9,902	10,453	10,515	10,251	10,155	10,173	10,138	10,180	8,23
940	7,234	6,082	6,293	6,255	7,644	8,465	8,398	8,564	8,883	8,764	10,228	8,66
941	8,597	8,687	8,540	9,033	8,678	9,431	9,936	9,619	5,984	10,155	9,927	10,04
942	8,192	6,850	7,898	7,922	10,141	10,097	10,081	10,314	10,030	9,991	10,058	11,13
943	9,881	7,710	10,302	10,519	10,331	10,491	10,319	10,274	10,063	10,120	10,023	10,18
944	10,072	10,099	9,929	10,017	10,524	10,512	10,502	10,210	9,927	9,860	10,060	10,27
949	10,256	10,267	10,242	10,208	10,519	10,136	9,879	10,095	10,097	10,005	10,290	10,44
946	10,145	10,127	10,500	10,270	10,104	10,359	10,490	10,354	10,371	10,019	9,876	9,86
947	8,905	9,305	7,360	10,359	10,058	10,127	9,989	9,966	9,759	10,127	9,989	9,95
949	10,058	10,382	10,476	10,359	10,435	10,469	10,381	10,288	10,065	10,074	10,113	10,19
950	10,406	10,500	10,173	10,104	10,150	10,336	9,920	10,524	10,265	9,961	10,012	10,21
951	9,621	8,314	10,196	9,989	10,453	10,104	10,430	9,372	10,242	9,966	9,920	9,35
952	8,949	10,173	10,312	10,035	9,440	10,476	10,524	10,035	9,395	9,619	10,242	9,98
953	8,722	7,538	10,081	10,035	10,312	10,382	9,621	9,759	9,816	9,667	9,305	9,89
954	9,598	9,328	9,805	10,382	10,012	10,453	10,453	10,336	9,943	9,966	8,707	a9,93
955	10,381	10,264	10,054	9,914	10,031	10,007	10,264	10,054	9,574	10,124	10,170	9,79
956	10,007	8,835	6,612	6,050	10,194	10,194	10,287	9,891	9,844	10,054	9,137	10,12
957	9,914	10,147	10,147	9,029	10,427	10,241	10,357	10,007	10,474	10,241	10,241	10,28
958	10,241	10,474	10,334	10,474	10,427	10,404	10,498	10,474	10,194	10,077	10,194	10,00
959 960	9,008	7,825	7,245	10,381	10,171	10,311	10,267	10,134	10,031	10,381	9,867	10,21

a Contents by capacity table used beginning Sept. 1, 1954; contents Sept. 30, 1954, by capacity table used prior to Sept. 1, 1954, was 9,966 million cubic feet.

Historic net evaporation = historic surface area (converted from storage-area curve) x estimated net evap

Reservoir Impairment (using WSACC as an Example)

CODDLE CREEK RESERVOIR/LAKE HOWELL WATER LEVEL REPORT

	WATER	RAINFALL	LAST YEAR'S	MINIM	IUM RELEA		E CREEK LOW	LAKE I	MATED HOWELL LOW	DROUGHT		
DATE	LEVEL	(inches)	WATER LEVEL	Discharge Over Spillway	Minimum Release Discharge	cfs	mgd	cfs	mgd	cfs	mgd	STAGE
8-3-20	650.0	0	649.3	No	Yes	3*	1.95	11.90	7.74	17.49	11.37	Stage 1
8-10-20	649.9	0	649.1	No	Yes	3*	1.95	7.75	5.04	11.39	7.41	Stage 1
8-11-20	649.9	0	649.1	No	Yes	3*	1.95	7.75	5.04	11.39	7.41	Stage 1
8-17-20	650.1	2.1	648.9	Yes	Yes	3*	1.95	12.70	8.26	18.67	12.13	Stage 1
8-18-20	650.2	0	648.9	Yes	Yes	3*	1.95	12.70	8.26	18.67	12.13	Stage 1
8-19-20	650.0	0	648.9	Yes	Yes	3*	1.95	15.50	10.08	22.79	14.81	Stage 1
8-21-20	650.0	0	649.0	Yes	Yes	3*	1.95	15.50	10.08	22.79	14.81	Stage 1
8-24-20	650.1	0.5	648.9	Yes	Yes	3*	1.95	9.90	6.42	14.51	9.43	Stage 1
8-27-20	650.0	0	648.9	No	Yes	3*	1.95	8.77	5.70	12.89	8.38	Stage 1
8-31-20	650.2	2.0	648.9	Yes	Yes	3*	1.95	262.00	170.30	385.14	250.34	Stage 1

Full Pond Level - 650.0'

DROUGHT OPERATING CURVES:

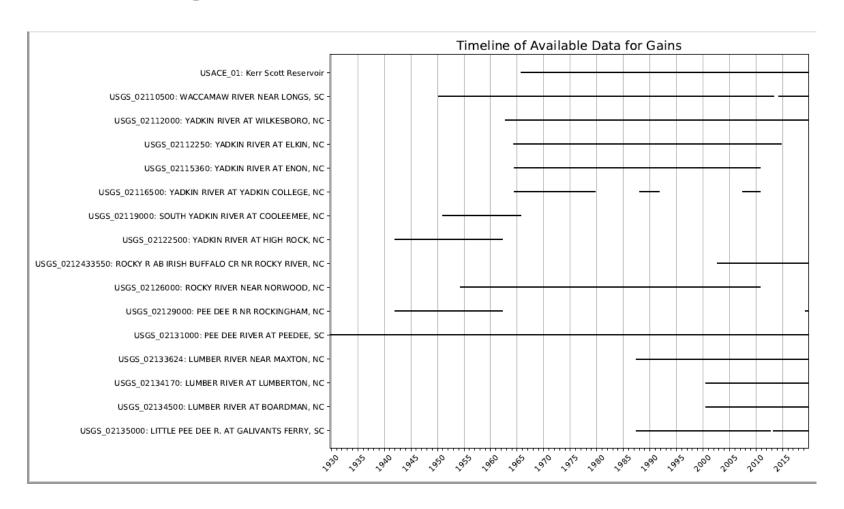
Normal: > 70% usable volume (645.5 feet), > 75% historical inflow, minimum release = 6 cfs.

Stage 1: > 70% usable volume (645.5 feet), < 75% historical inflow, minimum release = 3 cfs.

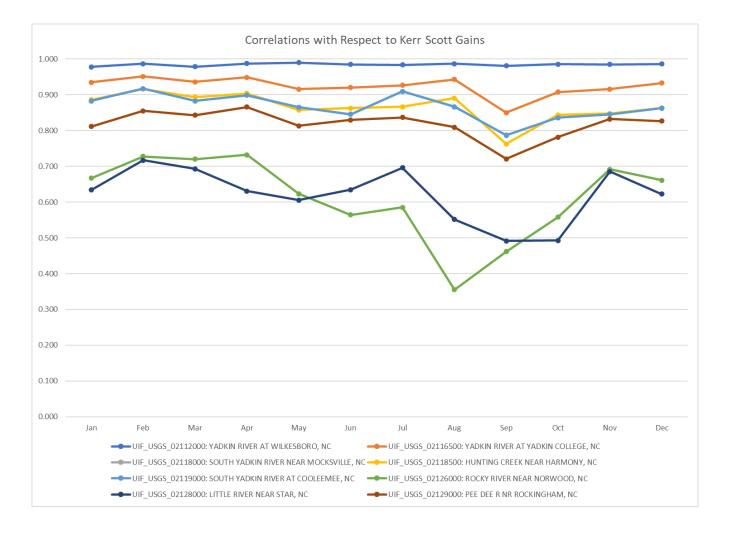
Stage 2: 70% usable volume (645 feet), minimum release = 2 cfs.

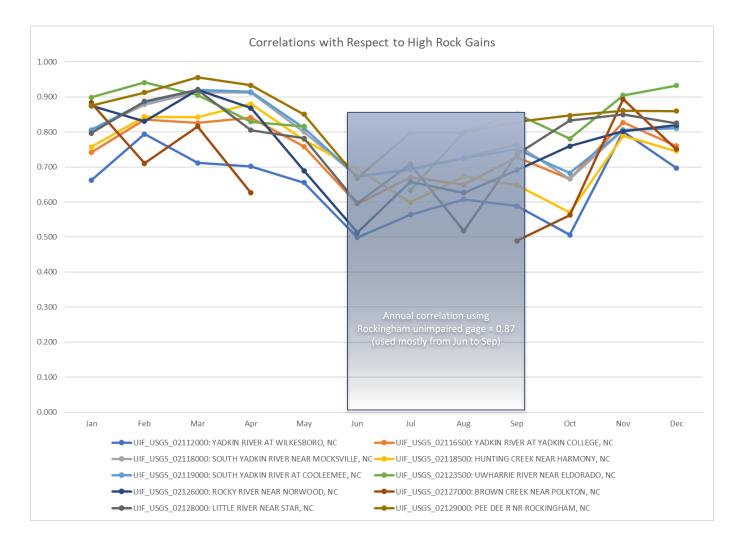
Stage 3: 60% to 40% usable volume (643.9 feet to 640.4 feet), (depending upon the month), minimum release = 2 cfs.

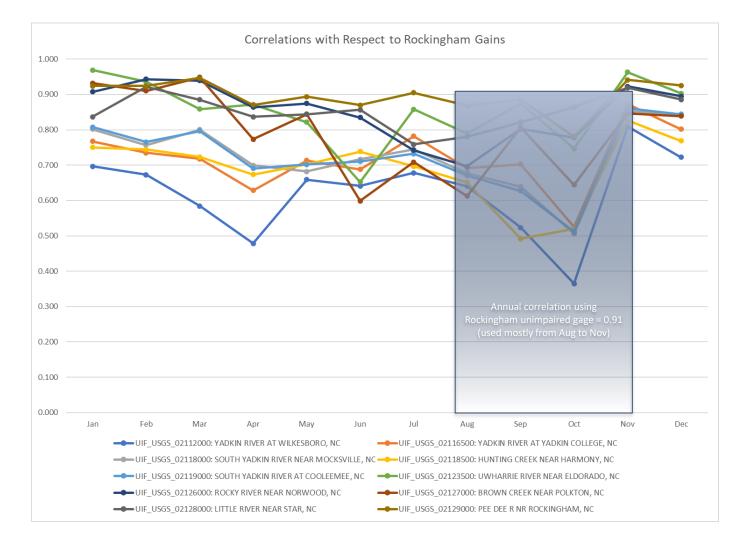
Stage 4: 50% to 30% usable volume (642.2 feet to 638.4 feet), (depending upon the month), minimum release = 2 cfs.

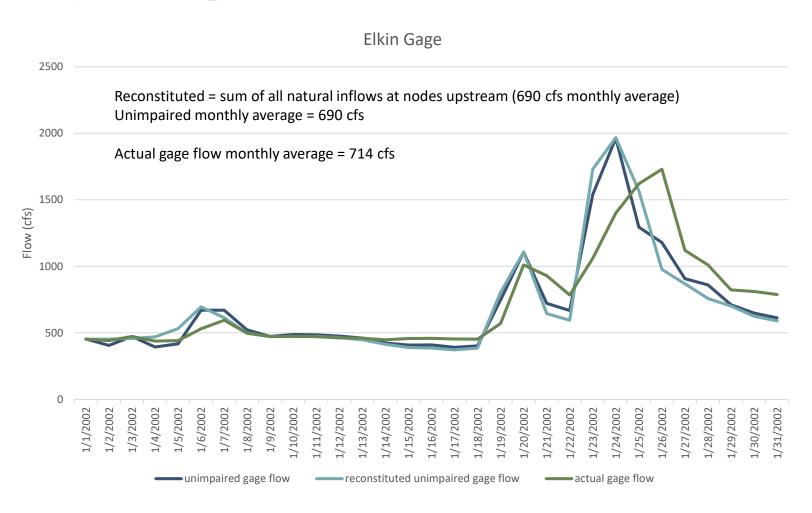

^{*}The minimum release discharge is a total of 2.0 cfs – 1.0 cfs from Coddle Creek Reservoir/Lake Howell and 1.0 cfs from Coddle Creek Water Treatment Plant.

Unimpairment of Gages

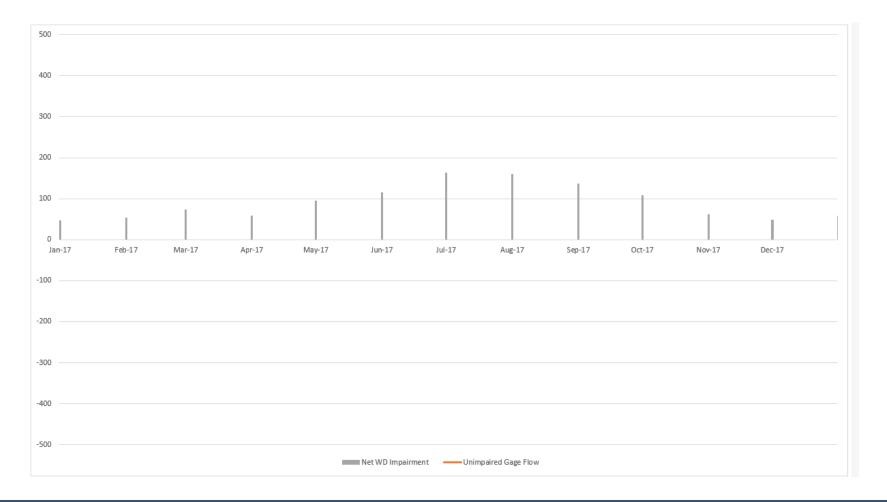

	-	-	-		-					-							
All flows in ofs																	
	Observed Flow	Discharge	D: I	D: I	D- 1	Discharge	D: 1	Withdrawals	Withdrawals	Withdrawals	I In I		Reservoir Impairment				
l l	'adkin River at Yadkin College, NC		Discharge	Discharge	Discharge		Discharge	Yadkinville	Davie Co Sparks Rd WD	WS Idols Dam WD	Davidson Water		5-D Reservoir	Total	Total impairmen	t Total	Total
,	02116500	NC0020338	NC0084212	NC0055158	NC0084425	NC0037834	NC0084425	02-99-015	02-30-015	02-34-010	02-29-025	change in storage	net evap		above upstream		Unimpaire
	02110300	1400020000	1400004212	1400000100	1400004423	1400031004	1400004423	02 33 013	02 30 013	02-34-010	02 20 020	criange in storage	Herevap	in this reach		to downstream gage	
										02 01 010				iii a ii sicaoii	gogo	to downstream gage	02116500
Date																	USGS_02116
12/18/1996	3230	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	19.6	51.4	3281
12/19/1996	3540	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	45.5	77.2	3617
12/20/1996	3830	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	-323.6	-291.8	3538
12/21/1996	3350	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	53.5	85.2	3435
12/22/1996	3070	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	254.2	285.9	3356
12/23/1996	2880	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	128.2	159.9	3040
12/24/1996	2860	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	-24.6	7.2	2867
12/25/1996	3230	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	-356.2	-324.5	2906
12/26/1996	3240	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	3.1	34.8	3275
12/27/1996	3000	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	251.7	283.4	3283
12/28/1996	2810	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	-49.8	-18.0	2792
12/29/1996	2780	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	-59.7	-28.0	2752
12/30/1996	2860	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	51.0	82.8	2943
12/31/1996	2730	1.27	0.29	0.20	0.31	32.18	0.31	1.40	1.48	51.17	12.26			31.7	-51.0	-19.3	2711
1/1/1997	2680	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	-417.7	-382.3	2298
1/2/1997	2680	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	331.2	366.6	3047
1/3/1997	2660	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	9.0	44.4	2704
1/4/1997	2620	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	10.3	45.7	2666
1/5/1997	2650	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	-27.0	8.4	2658
1/6/1997	3140	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	-122.2	-86.8	3053
1/7/1997	3020	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	34.2	69.6	3090
1/8/1997	2720	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	35.5	70.9	2791
1/9/1997	3460	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	387.6	423.0	3883
1/10/1997	4940	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	-159.5	-124.0	4816
1/11/1997	4470	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	-32.4	3.0	4473
1/12/1997	3710	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	-140.0	-104.6	3605
1/13/1997	3230	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	10.3	45.7	3276
1/14/1997	2940	1.19	0.28	0.19	0.31	33.06	0.31	1.61	1.56	54.97	12.61			35.4	-14.9	20.5	2960

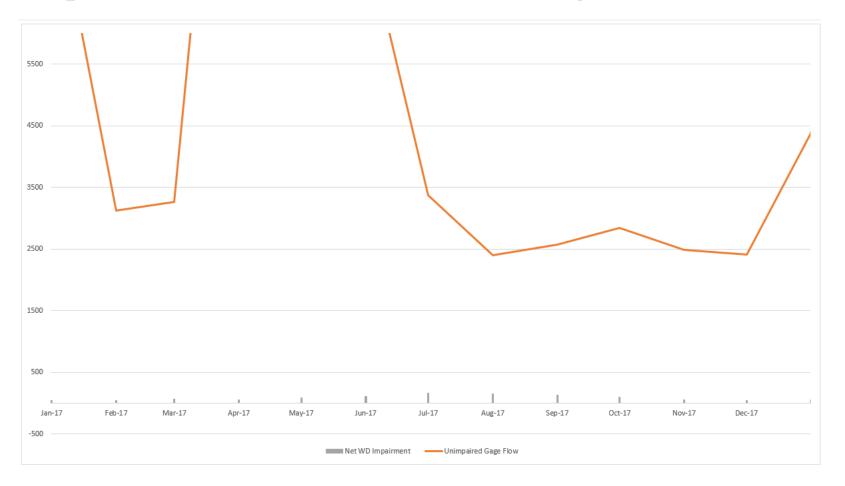

Fill In Missing Record


Correlation


Correlation

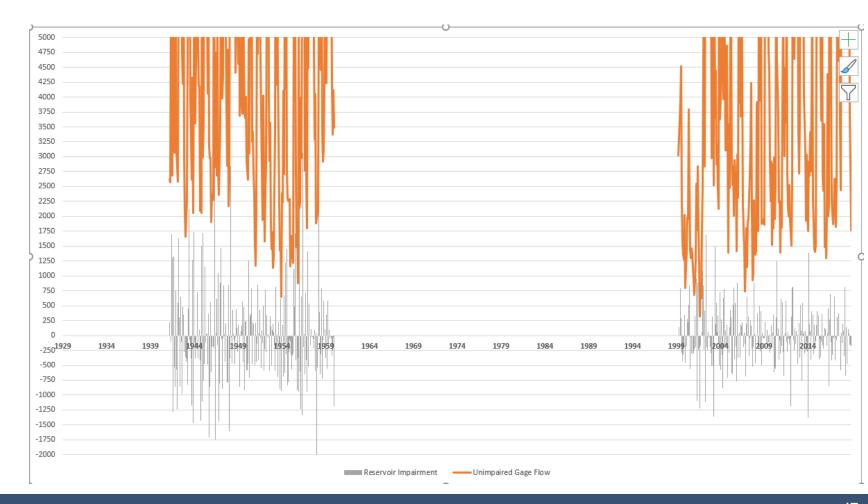
Correlation


Finalize to Daily Timestep


Impairment Summary

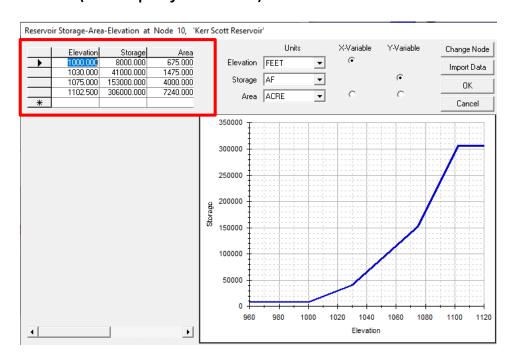
	Summary of Impair	ments Upstream of Key Gag	es or Locations (excluding reservoir operations)									
	2017 Data											
		Net Impairment (cfs)	Remarks									
	Wilkesboro	13.6	About 11.5 for M&I, rest for Ag (about 2.5) assigned t	o Kerr Scott								
In other words,	Elkin	9.4	Mostly from WW return between Wilkesboro and El	kin								
net impairment	Enon	30.3	Mostly W-S withdrawal (about 20 cfs from Swanns in	ntake)								
drops by about 4 cfs	Yadkin College	34	Breakout of major uses is as follows:	* for inflow unimpair	ment, when facto	ring in reserv	oir operations	, includes ro	outed chang	e in storage	at Kerr Scott	(avg im
from Wilkesboro			W-S withdrawal of 37 cfs from Idols intake									
to Elkin			W-S WW return of 49 cfs (23 cfs to muddy creek, 26 cf	s to salem archie)								
			Davidson withdrawal of 15.4 cfs (no WW return)									
				So using these numb	ers, YC impairmer	nt = Enon gage	+ W-S WD - W	/W discharge	e in reach =	30.3 + 37 + 1	15.4 - 49 = 33.7	
				Actual impairment of	34 cfs reflects oth	ner WDs and	WW discharge	s				
				Ag allocated to Kerr S	cott propagated d	lownstream, l	out additional	Ag only sho	wn again fo	r High Rock		
	High Rock	63.8	24.9 net impairment in this reach, mostly from Ag (2)	8.8) in HR subbasin allo	cated to this loca	ition						
			So total net impairment = 34 (at Yadkin College) + 24	1.9 in this reach = 63.8								
	Rockingham	93.8	7.5 cfs WD for Asheboro down to Tillery (no WW retu	ırn)								
			14.8 cfs WW return for Rocky River Mallard Creek (fro									
			6.5 cfs WW return for Rocky River Mooresville (from 6									
			10 cfs WW return to WSACC (from outside basin, so r		,							
			17 cfs Ag WD for subbasins TT, Na, Fa, Till, and Blew									
			10 cfs WD for Anson County (WW returned DS)									
			6.5 cfs WD for Smith plant									
			4 cfs WD for Montgomery County (no WW return back in)								
			5.7 cfs WD for Richmond County (no WW return back in)									
			4.1 cfs WD for Hedrick Mine									
			in the first freezing fining									
			Net = 55 WD - 30 WW = 25 WD in this reach									
			So HR + Rockingham = 63.8 + 25 = 88.8 cfs									
			Actual in unimpairment spreadsheet = 93.8 cfs, so c	lose								
			recours in annipulment spreadsheet = 55.6 cls, 50 c	.030								
			To Blewett, total net impairment would 93.8 - WDs i	n bold (or about 33 cfs).	or 60 cfs							
			So change in impairment from High Rock to Rocking			servoir operat	ions)					
			Provisional inflows remove effect of reservoir opera									
			or gages on tributaries that are drainage area adjus									

Net Impairments (Not Incl. Reservoirs) – High Rock

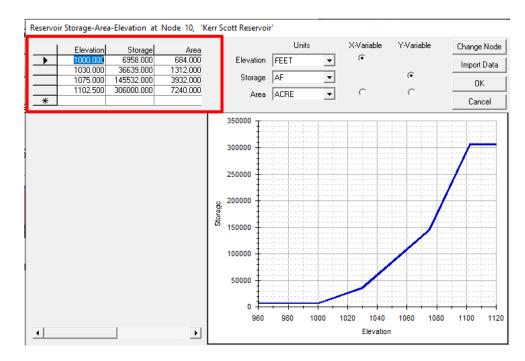


Net Impairments (Not Incl. Reservoirs) – High Rock

Reservoir Impairments – High Rock



Other Data for Basecase Run


- Physical
 - Reservoir storage-area-elevation
 - Pumping capacity
 - Turbine capacity
 - Spill rating curves

SAE for Kerr Scott

Old (from project start)

2010 (survey up to 1075 feet)

Operations

- Derive from reports, LWSPs, WSRPs, operating licenses, and personal contacts
- Include drought plans and minimum releases

Drought Plans

• Almost 20 that are modeled – tied to reservoir storage/elevation; river flow; drought monitor, and/or river stage. Drought monitor used for LIP when available. % WTP capacity not modeled since that requires distribution system demand that can vary hourly.

Water Shortage Response Plan Comparison Matrix: Triggers

Utility	Union Co	Albemarie ¹	Anson Co	Concord ^{1,2}	Davidson Water ¹	Davie Co ²	Denton	Dobson	Elkin	Hamlet Water System	Handy Sanitary District	Jonesville
	Catawba River & Blewett Fall		Blewett Falls Lake	2007 IBT from Catawba Basin	Yadkin River	South Yadkin River & Yadkin	Tuckertown Reservoir	Fisher River	Big Elkin Creek	Water Lake	Tuckertown Reservoir	Yadkin River
		Badin Lake		(Charlotte Water - Finished) &		River						
Source Water	Finished)			Yadkin Basin (Albermarle -								
1 1				Finished), Purchase (Kannapolis								
				Finished)								
		Lake Levells: Huffi Rock Lake: -4.0 ft Bedin Lake: -4.0 ft	YPOLIP	US Drought Monitor: 0 Stage 0 Lake Levels: High Rock Lake: YPDLIP Inflow: Lake Howel: WSACC Stream Inflow: YPDLIP	Reservoir Levels on-site @ WTP: < 85% Streamflows: < 400 dfps Demand: 7 day average > 16 mgd (80%)	US Drought Monitor: 0 or 1 Streamflows: Compare to 7 day demand System Specific Indicators: 7 day average demand as % of flow >25%	YPOUP	None	Consideration shall be primarily given to the following criteria: water levels in the Big Elitin Cresi, water levels in the Big Elitin Cresi, water levels in the Town's reservoir, capabilities of water production and distribution system, outsols for precipitation, daily water use patterns, seasonal and long-term weather patterns and availability of water from other sources.	None	YPDLIP	A state of emergency shall be deemed to exist whenever, in the opinion of the board of Commissioners, the evaluability and suply of water is critical so that a mechanical malfunction of breakdown of the town's pumps or a rapid dirawdown of the stown's pumps or a rapid dirawdown of the water supply and availability of water as to threathen or cause to threathen availability of water for human consuption, for first highling purposes and other protection of leves and property, and the conservation of water is necessary in order to protect lives, safety and property within the town.
	Catawba-Wateree LIP	Lake Levels:		US Drought Monitor:	Lake Level:	US Drought Monitor:		None		None		
1 1		High Rock Lake: -8.0 ft	YPDLIP			1 or 2	YPDUP				YPOLIP	
		Badin Lake: -6.0 ft										
	capacity for the average of a 7	Tuckertown Reservoir: -2.0 ft		Lake Levels:		Streamflows:						
	day period			High Rock Lake: YPDLIP	< 350 cfps	Compare to 7 day demand						
Level 2				Inflow:	Demand:	System Spedific Indicators:						
or				Lake Howell: WSACC		7 day average demand as %						
Mandatory Reductions I				Lake Howes, Warloc		of flow >50%						
realizatory necessitis i				Stream Inflow:		or now Poore						
1 1				YPDLIP								
1 1												
1 1												
1 1												
	Catawba-Wateree LIP	Lake Levels:				US Drought Monitor:		None		None		
			YPDLIP	2 Stage 2	Reservoir Levels on-site @ WTP: < 75%	1 or 2	YPDUP				YPOLIP	
		Badin Lake: -8.0 ft		Lake Levels:	Streamflows:	Street and beauty			I			
	capacity for the average of a 7 day period	ruckenown reservoir: -3.0 ft		Lake Levels: High Rock Lake: YPDUP		Streamflows: Compare to 7 day demand			I			
1 1	day period			righ Rock Lake: PPDCP	K. 300 G ps	Compare to 7 day demand						
Level 3				Inflow:	Demand:	System Specific Indicators:						
or or				Lake Howell: WSACC	7 day average > 18 mgd (90%)	7 day average demand as %			I			
Mandatory Reductions II						of flow>50%			I			
									I			
1 1				Stream Inflow:								
1 1			I	Marine Line		I	I	I	1		I	ı l

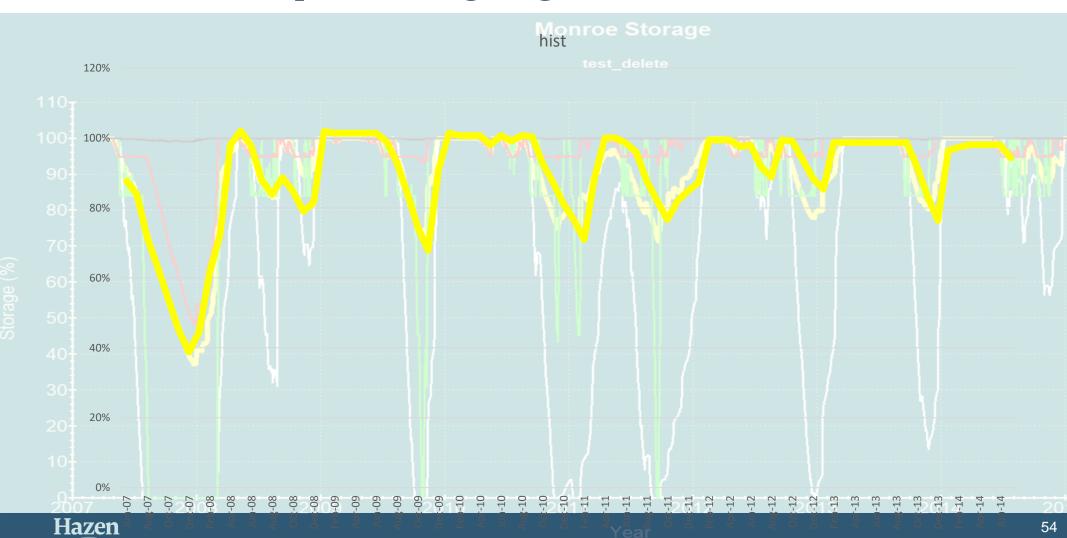
LIP – Yadkin Project Requirements

Low Inflow Protocol for the Yadkin & Yadkin-Pee Dee River Hydroelectric Projects

GOAL

The fundamental goal of this Low Inflow Protocol (LIP) is to take staged actions in the Yadkin-Pee Dee River Basin needed to delay the point at which available water storage in the Yadkin Hydroelectric Project (Federal Energy Regulatory Commission – FERC No. 2197) and the Yadkin-Pee Dee Hydroelectric Project (FERC No. 2206) (collectively, projects) reservoirs is fully depleted while maintaining downstream flows. This LIP is intended to provide additional time to increase the probability that precipitation will restore streamflow and reservoir water elevations to normal ranges. The amount of additional time that is gained during implementation of this LIP depends on the diagnostic accuracy of the trigger points, the amount of regulatory flexibility available to operate the projects, and the effectiveness of the projects' operators and the water users in working together to implement required actions and achieve significant water use reductions. It is assumed that water users in the Yadkin-Pee Dee River Basin not subject to this LIP must comply with all applicable State and local drought response requirements.

3.1.4.4 Updating the LIP

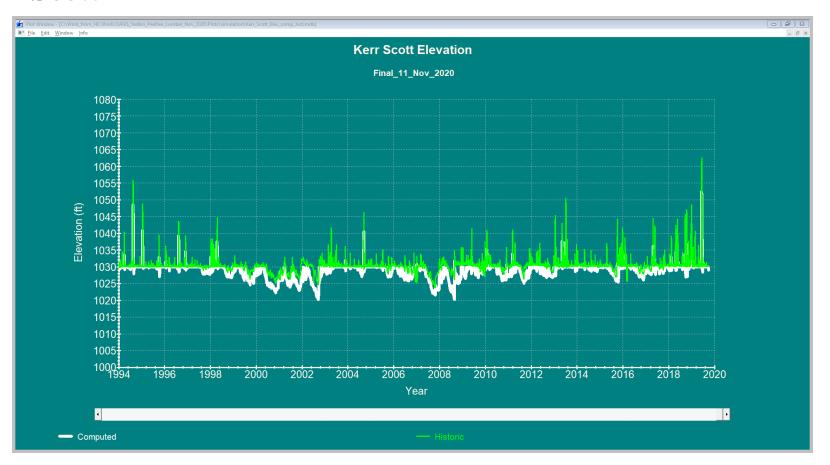

During the term of this license, the Licensee shall consult with the YPD-DMAG at least once every five (5) years to review and consider updating the LIP. The use of the period of record 1974 through 2003 to calculate the Historic Stream Gage Three-Month Rolling Average flows set forth in Table LIP-1 of this Article shall be evaluated every five years during such review. On the basis of such consultation, review and consideration, the Licensee may propose modifications to this Article for the Commission's review and approval.

The Licensees will provide flow from storage in the projects' reservoirs to support hydroelectric generation and to provide Required Minimum Instream Flows in accordance with their respective new FERC licenses. During periods of normal inflow, reservoir water elevations will be maintained within their Normal Reservoir Operating Ranges. During times that inflow is not adequate to provide Required Minimum Instream Flows and maintain reservoir water elevations within their Normal Reservoir Operating Ranges, the Licensees will reduce releases for hydroelectric generation. If reservoir storage continues to drop and climatologic or hydrologic conditions worsen until trigger points defined in this LIP are reached, the Licensees will implement additional provisions of this LIP, including meeting with the designated agencies and water users to discuss the need for actions pursuant to this LIP. If conditions worsen, progressive stages of this LIP will allow additional use of the available water storage inventory, while conserving water storage volumes through required reductions in LIP Flows and required reductions in water withdrawals.

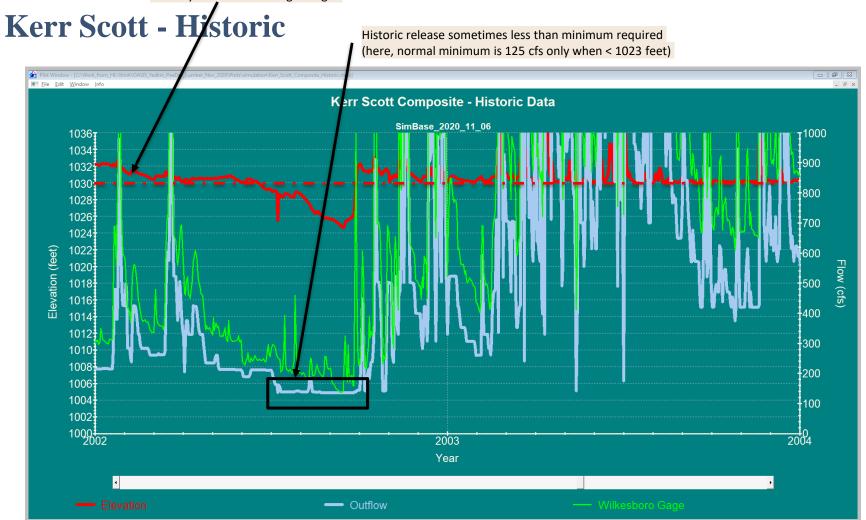

Verification of Basecase Run

- Inflows
- Operating rules

Monroe – Example -- At 6 mgd avg.



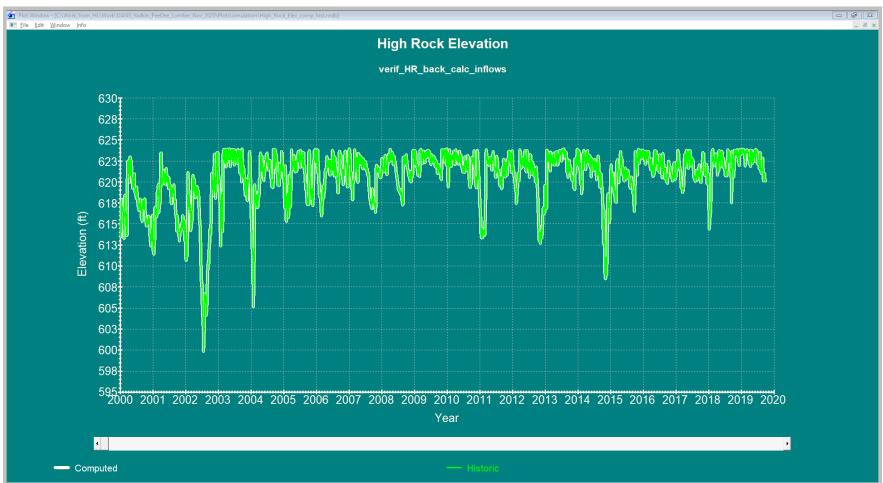
Kerr Scott


Note: operation changed in 1993 with Water Control Plan, including new low flow protocol

Kerr Scott

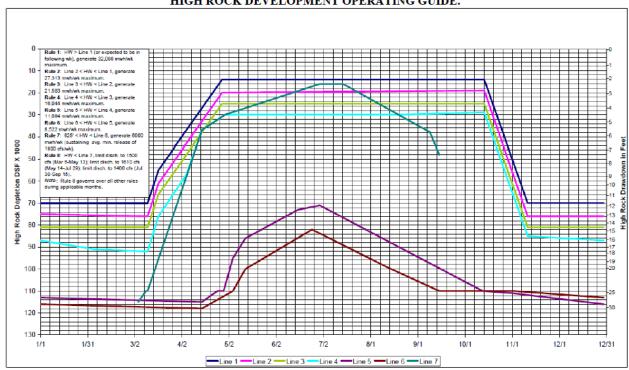
Note: shown since 1993 when revised Water Control Plan went into effect

Historic return to guide curve can be delayed due to hedging on flooding concerns downstream and also holding water to delay drawdown during drought



Kerr Scott - Simulated

High Rock



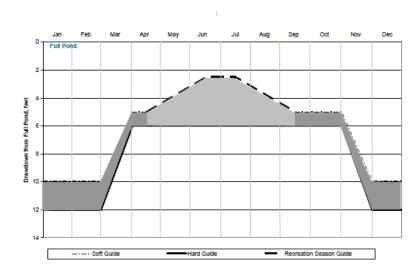
Documents Used to Model Mainstem Operations

- HDR Model Logic and Verification Report from 2014
 - Pulled some information from the 2002 APGI and 2003 Progress Energy Initial Consultation Documents
 - CHEOPS model inputs for 2014 Assessment of Union County IBT
- Relicensing Settlement Agreement for APGI and Comprehensive Settlement Agreement for Progress Energy in 2007
- License Documents for APGI in 2016 and Duke Energy in 2015

Old License Operation for Yadkin Projects

FIGURE 2-2 HIGH ROCK DEVELOPMENT OPERATING GUIDE. 4

Alcoa Power operated its Yadkin Project in accordance with a 1968 headwater benefits agreement with the licensee of the Yadkin – Pee Dee Project. According to the 1968 agreement, Alcoa Power regulates weekly average stream flow from Falls Reservoir to provide a flow not less than 1,500 cubic feet per second (cfs) during the 10-week period preceding the recreation season (May 15 through September 15); 1,610 cfs from May


Iterations for a New License

Modeled by HDR for Union County IBT work circa 2014

Proposed Operations B.2.1.2

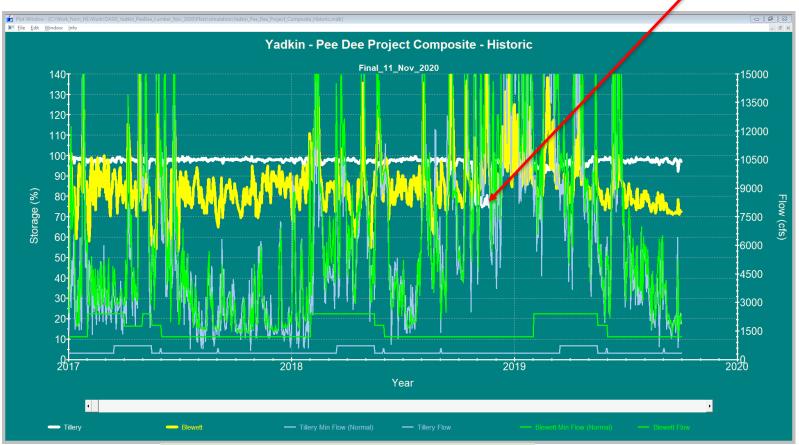
Reservoir Operations

APGI proposes that under the new license, High Rock will be operated in accordance with a revised Guide Curve (Figure B-2) that features three basic guides: a Hard Guide, a Soft Guide, and a Recreation Season Guide (April 15 to September 15). During normal operations, APGI will maintain the reservoir elevation at or above the Soft Guide or the Recreation Season Guide elevation. Generation is not restricted for normal operations. If at any time the water level at High Rock falls below the Soft Guide or Recreation Season Guide and above the Hard Guide curve elevation (dark shaded section), APGI will reduce its generation and water releases from High Rock to the flow equivalent of no more than 1,500 cfs weekly average discharge until such time that the High Rock reservoir level returns to or above the Soft Guide or Recreation Season Guide curve. Operation in this range is expected to occur infrequently, and would be caused by conditions such as: actual inflows not meeting projected inflows; human error; equipment malfunction or failure; drought periods; or electrical system emergency (e.g., transmission bottlenecks, real and reactive power support, load following support, etc.) as discussed in the proposed Hydro Project Maintenance and Emergency Protocol (HPMEP) for the Project (see Exhibit B.6.4).

B-3

Figure B-2: Proposed High Rock Guide Curve

Basin-Wide Operations


- Mostly independent
 - Reservoirs upstream will not make releases for users downstream unless minimum flow requirements apply
 - Kerr Scott will provide additional release from Winston-Salem's account during low flow/high demand
 - Kerr Scott will limit releases down to Wilkesboro for flood control
- Coordination among entities with multiple reservoirs, intakes, and WW discharges (e.g., WSACC, Anson County, Moore County in Lumber)
- Coordination through sale and purchase agreements, regular and emergency
- Coordination during drought conditions through Low Inflow Protocol

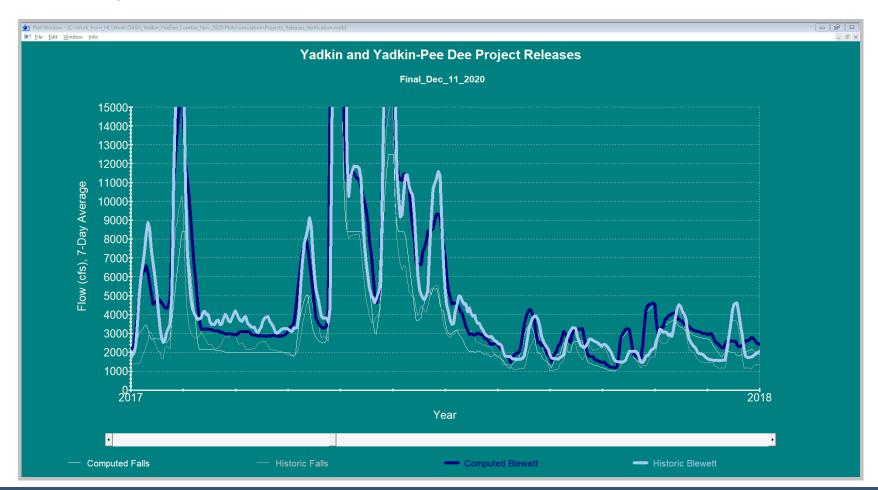
Hydro Operations

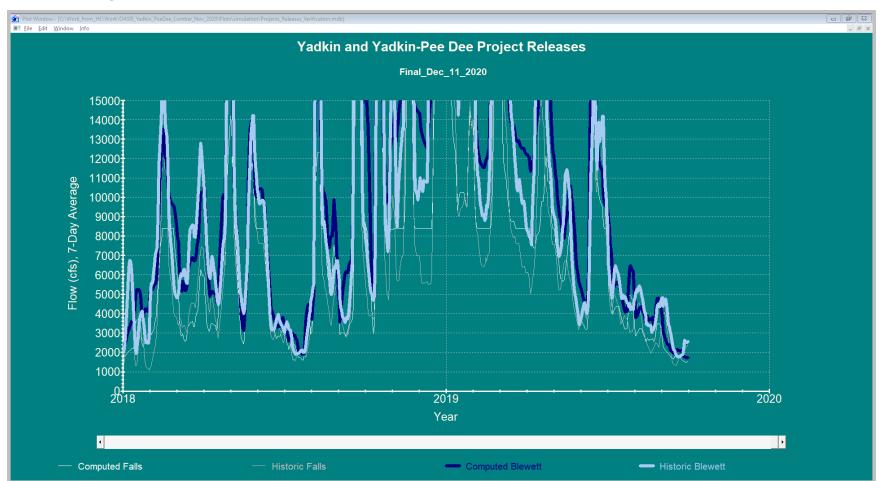
- Set up to exploit the permitted operating band per the license agreements
 - · Model will generate down to the normal minimum elevation (NME) up to turbine capacity
- Limited the operating range based on historic data (since 2017 when both companies were operating with new licenses)
- Not capturing day-to-day operations that are based on power market prices and demand
 - Customized models can be developed as off-shoots to model (e.g., optimal dispatch for Dominion Virginia on the Roanoke River)

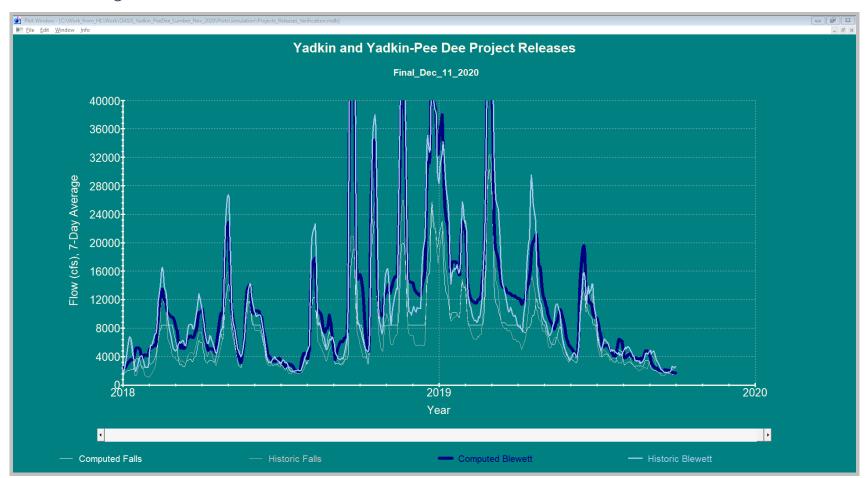
Maintenance (Ed Bruce believes this was the case for Tillery)

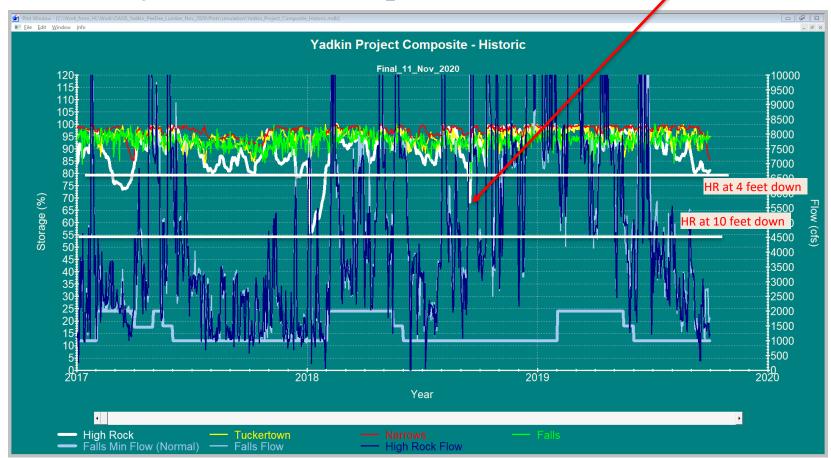
YPD Project - Historical Operation

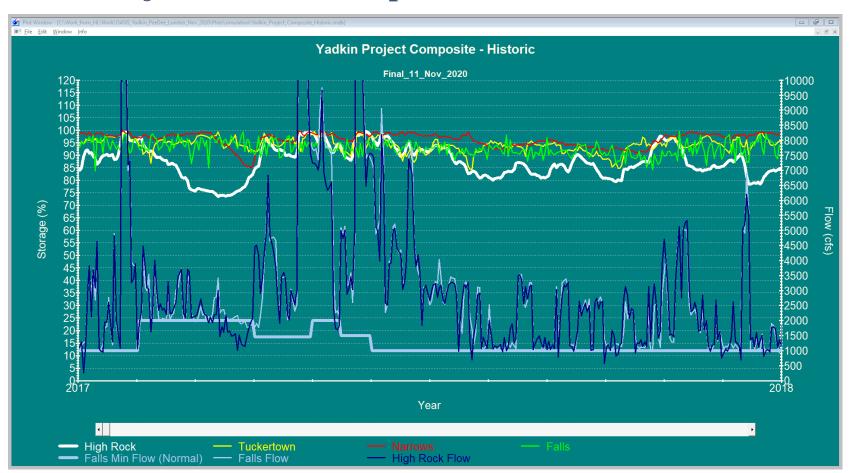
Shown is post-2017 after license was renewed so we have representative operations. Here normal min flow requirement is shown; for Blewett, it would be adjusted if LIP were activated

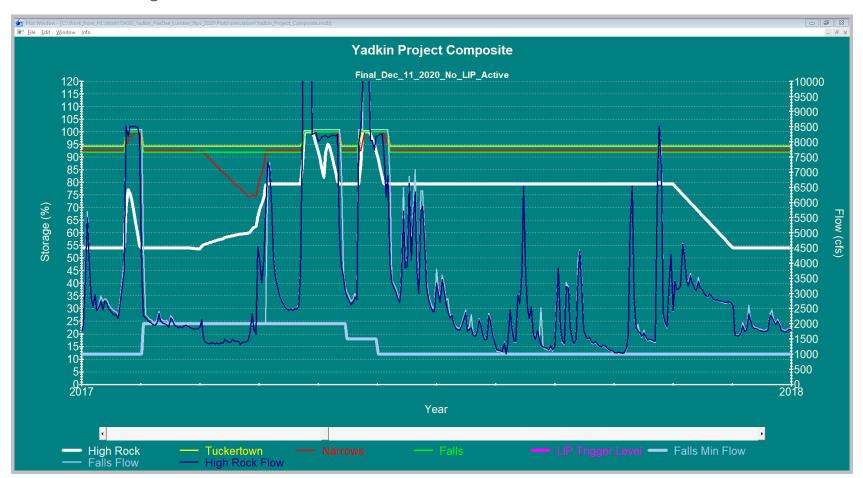

YPD Project - Historical Operation

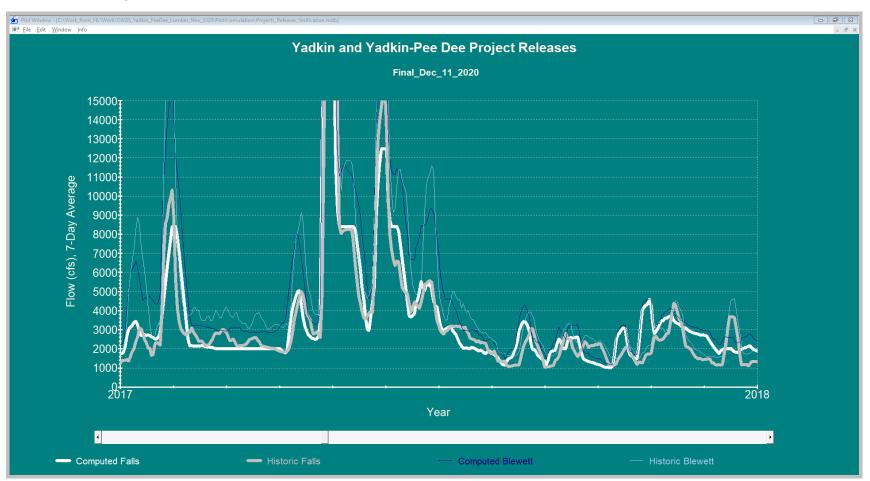


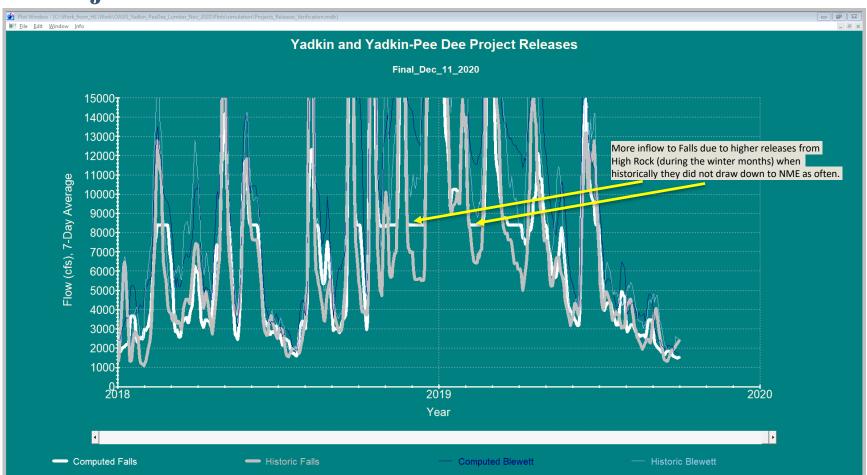


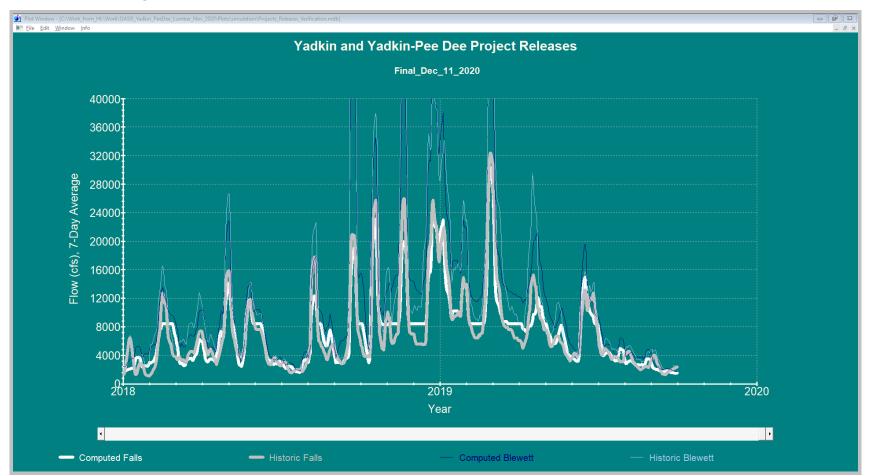







Yadkin Project - Historical Operation


Yadkin Project - Historical Operation



YPD Project - Simulation

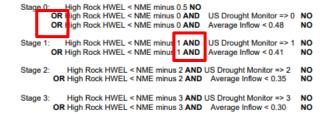
Low Inflow Protocol

- Implemented in Feb. 2007
- High Rock operations impacting elevations may have changed between then and when license was issued in 2017
- Monthly determination, influencing Falls and Blewett minimum releases and water withdrawals (stages >=1) and hydro peaking (stages >= 0)
- Drought monitor based on national product (available since 2000), potentially refined for regional use
- DMAG to review every 5 years per license conditions as it relates to drought monitor (national vs. regional), gaging estimates and long-term averages, and proportional drawdown of reservoirs

December 1, 2019: LIP Stage -1 Normal

High Rock HWEL = NME plus 9.4 = 623.3 USGS Datum (NGVD29), 654.4 YAD

Current 3-mo rolling avg. inflows = 2,778 cfs


	USGS Gage			
	Yadkin River at	South Yadkin	Abbotts Creek at	Rocky River Near
	Yadkin College 2116500	River Mocksville 2118000	Lexington 2121500	Norwood 2126000
September	1491	165	24	111
October	2111	224	54	273
November	2945	322	135	479
3 mo. avg.	2182	237	71	288

Hist. 3-mo rolling average inflows = 3,550 cfs (Inflow Ratio = 0.78)

Drought Index Ratio = (1+1+0)/3 = 0.67 Last Month LIP Stage = Stage -1

Evaluation Criteria for LIP Stage Implementation:

The LIP must be implemented beginning at Stage 0 and, if the combination of conditions becomes more severe, the Stages must increase in one Stage increments.

Stage 4: High Rock HWEL < ½ of NME minus CRWE AND US Drought Monitor => 4 NO
OR High Rock HWEL < ½ of NME minus CRWE AND Average Inflow < 0.30 NO

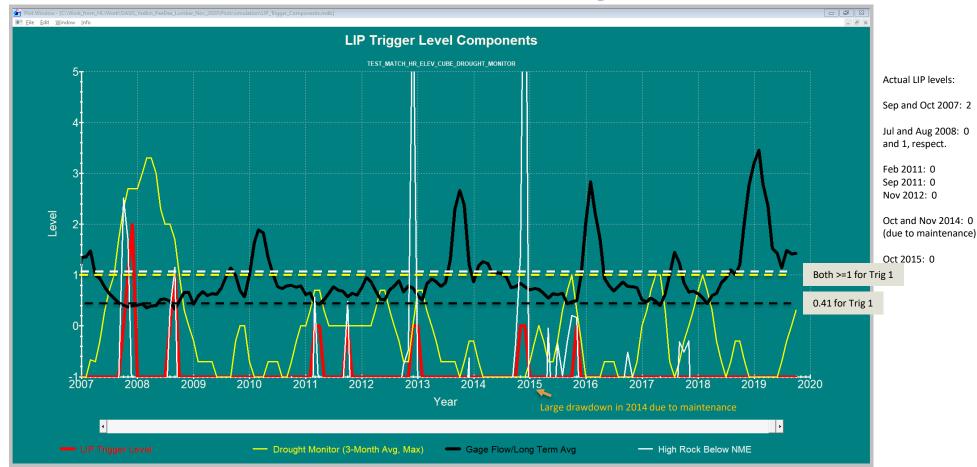
Evaluation Criteria for Recovery (If Previous LIP Stage + Stage -1)

Recovery from this LIP will be triggered by any of the three following conditions:

 Condition 1: If all three triggers associated with a lower numbered LIP Stage are met on the first of the month, the LIP recovery will be a general reversal of the staged approach on the first of each month.

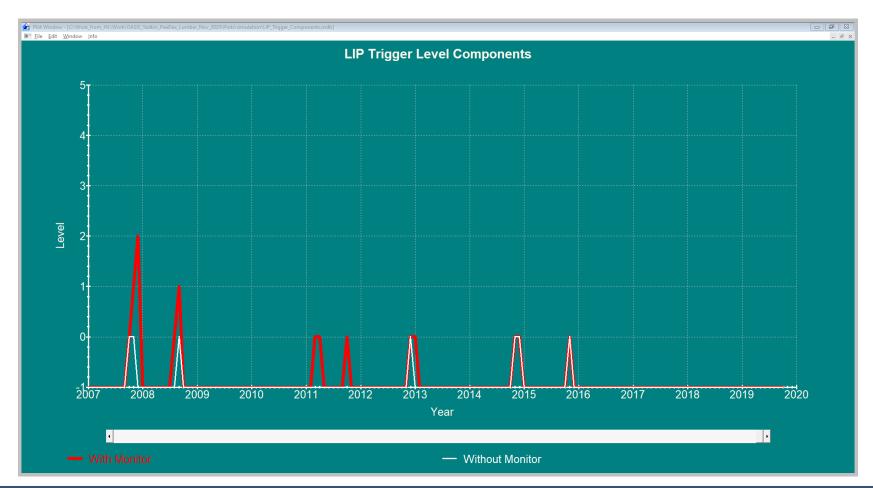
OR

 Condition 2: If High Rock Reservoir water elevations return to at or above the NME PLUS 2.5 ft, the LIP will be discontinued immediately.

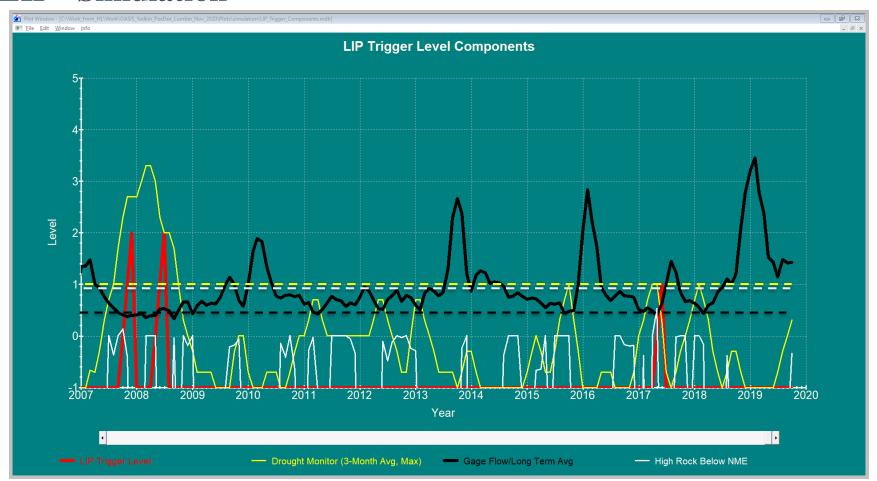

OR

Condition 3: If High Rock Reservoir water elevations return to at or above the NME for 2
consecutive weeks, the LIP will be discontinued immediately.

http://cubecarolinas.com/wp-content/uploads/2019/12/2019-12-December-Check.pdf



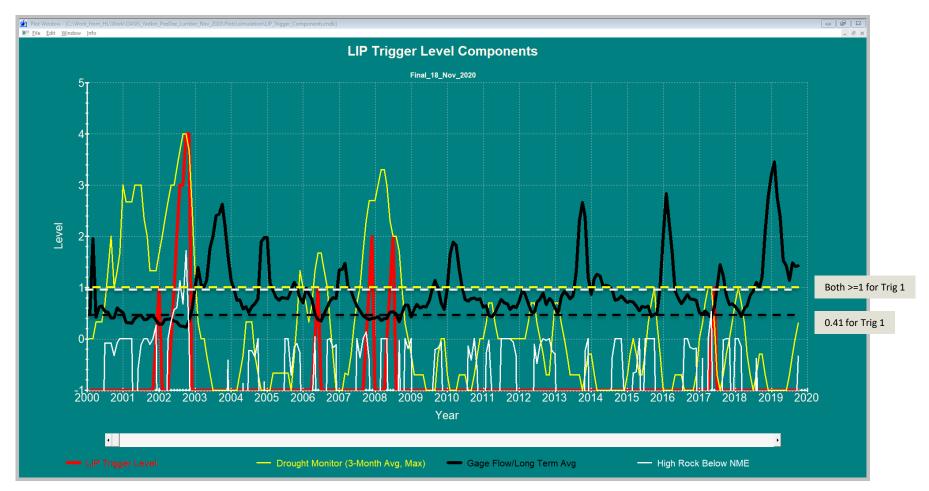
LIP (End of Month Assessment) – Matching HR Historic Elevation

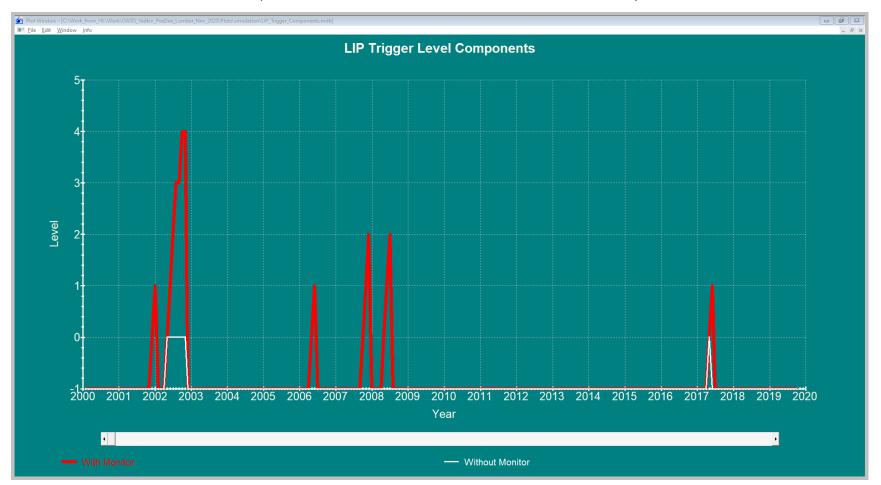


High Rock operations post-2007 LIP issuance may have differed from post-2017 license issuance. Timing of triggers might be offset by a month depending on when calculation is made.

Impact of Drought Monitor

LIP - Simulation



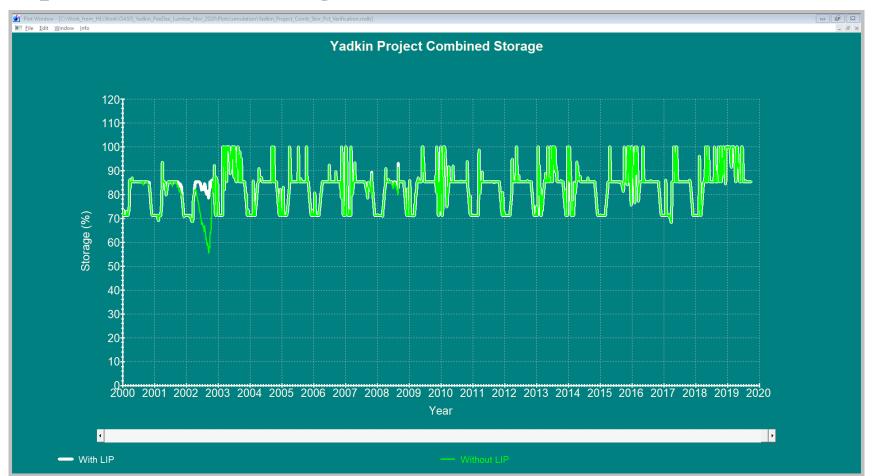

LIP – Simulation (With and Without Monitor)


LIP Simulation Back to 2000

LIP – Simulation (With and Without Monitor)



Impact of LIP on Flows



LIP on is with the drought monitor; No LIP also includes no utility WSRPs on – all set by switch in constants table (drought plans on or off)

Impact of LIP on Flows

Impact of LIP on Storage

Impact of LIP on Storage

